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CHAPTER I 
 

 

INTRODUCTION 

 

Glaciers throughout the world have shown decreases in size in recent years (WGMS, 

2008). Because of their sensitivity to temperature and precipitation changes, glaciers are good 

indicators for climate change (Nylen, 2001). Glaciers located in temperate areas are especially 

sensitive to warming due to their relatively quick flow and high mass turnover (WGMS, 2008). In 

areas with significant amounts of glaciation, a warmer climate can have a considerable effect.  

A ~0.6ºC increase in the mean global temperature is responsible for the overall retreat of 

mountain glaciers since the early 20
th
 century (Hock et al., 2005). Further decreases are expected 

due to increased global warming as predicted by General Circulation Models (Hock et al., 2005). 

Several potentially active volcanoes with rapidly thinning glaciers are located in Mexico, 

Columbia, Chile, and Tanzania (Tuffen, 2010). Tuffen (2010) estimates that if the current rate of 

thinning continues glaciated volcanoes would lose a large portion of ice. At Popocatépetl in 

Mexico, this has already happened. The amount of ice on Popocatépetl decreased 53% from 

1996-2001, which was partially due to eruptive activity (Julio-Miranda et al., 2008). Other 

mountain glaciers around the world have also experienced decreases in areal extent. The World 

Glacier Monitoring Service (WGMS) reports that annual melting rates of mountain glaciers have 

doubled since the turn of the century (WGMS, 2008). New records for ice loss were also set in 

2003, 2004, and 2006 (WGMS, 2008). Significant glacier changes could affect local hazards due 

to the decrease in glacial coverage and the increase in melt water. Glaciers, ice caps, and ice
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sheets cover approximately 10% of Earth‟s surface and contain 75% of its freshwater (UNEP, 

1992; Nylen, 2001). Hazards in volcanic regions that could occur as a result of melting glaciers 

include lahars, debris/ice avalanches, eruptions, and jökulhlaups (glacier outburst floods) (Hoblitt 

et al., 1998). Recent changes in glacial extent on Mt. Rainier could increase hazard risks due to 

the increase in melt water and steep exposed slopes (Crandell, 1971). The large amounts of loose 

debris, along with slopes that have been weakened as a result of hydrothermal alteration, also 

increase hazard risks at Mt. Rainier (Reid et al., 2001). The amount and rate at which Mt. Rainier 

glaciers are retreating is important for determining risks from hazards such as lahars, debris 

avalanches, eruptions, and jökulhlaups.  

Remote sensing provides an alternative method of monitoring glaciers changes as 

opposed to ground surveys or aerial photographic surveys. Glacier mapping using satellite images 

is generally less expensive and involves a smaller amount of labor than ground and aerial surveys 

(Sidjak and Wheate, 1999). Many studies have used Landsat images to map and interpret glacier 

changes around the world in places such as Iceland, British Columbia, Austria, and Peru 

(Williams et al., 1997; Sidjak and Wheate, 1999; Paul, 2002; Silverio and Jaquet, 2005). They 

show that satellite images are useful for collecting data on glacier extent, which can then be used 

for water management and climate monitoring purposes (Sidjak and Wheate, 1999). They are 

especially useful in places like the Tibetan Plateau, where areas with rugged terrain and lack of 

access make ground surveys very difficult or impossible (Zhen et al., 1998).   

This study concentrates on the changes in glacier areal extent that have occurred at Mt. 

Rainier and some of the possible consequences of those changes in terms of volcanic hazards. 

The first objective of this study is to measure the changes in glacier area from 1985-2009 at Mt. 

Rainier with satellite images. This study maps the areal extents of glaciers and groups of glaciers 

on Mt. Rainier as a function of time and then examines the rate of ice loss or gain for each 

glacier/glacier group as well as the rate of total ice loss or gain. These measurements are 

compared with measurements made by the United States Geological Survey (USGS) and the 
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Global Land Ice Measurements from Space (GLIMS) project. The second objective is to 

determine the possibility of an increased risk for eruptions at Mt. Rainier due to the removal of 

glaciers from its slopes. This study examines the relationship between glacier change and 

eruption rates in the past by comparing the modeled glacier area at Mt. Rainier for the last 10 ka 

to the eruptive history of Mt. Rainier and other Cascade volcanoes during the same period. Any 

correlations between times of deglaciation and increases in eruption rates could help in predicting 

future volcanic activity resulting from continued glacial retreat at Mt. Rainier  
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CHAPTER II 
 

 

STUDY SITE 

 

Mt. Rainier is a stratovolcano that is located in the state of Washington, United States  

(46° 51‟ N, 121° 45‟ W). It is part of the Cascade Range, which extends from northern California 

to southern British Columbia. At 4,392 m, it is the tallest volcano in the Cascade Range (Hoblitt 

et al., 1998). Mt. Rainier is primarily composed of andesite along with pyroclastic flow deposits 

and minor tephra deposits (Reid et al., 2001). The geologic history of Mt. Rainier began 

approximately 500 ka ago when it began forming on top of granite and metamorphic basement 

rocks of Tertiary age as well as a heavily eroded volcanic edifice of Pleistocene age (Lescinsky 

and Sisson, 1998). Volcanism at Mt. Rainier is a result of the subduction of the Juan de Fuca 

Plate beneath the North American Plate (Brantley, 1994). 
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Figure 1: Location of Mt. Rainier 

 

Mt. Rainier contains the greatest amount of glacial ice of any mountain in the 

conterminous United States (Hoblitt et al., 1998). There are numerous valleys radiating from the 

summit that contain glaciers. During the last ice age, these valleys were filled with glaciers as 

well as the majority of the surrounding areas (Crandell, 1969). There are 26 named glaciers on 

Mt. Rainier, which cover an area of 87 km
2
 and have a volume of 4.1 km

3 
(Driedger, 1993). 

The glaciers range from ~0.2 km
2
 to ~11.2 km

2
 in area (Nylen, 2001). The largest glacier in terms 

of area is Emmons Glacier (Nylen, 2001). However, Carbon Glacier has the greatest volume at 

~0.8 km
3
 (Nylen, 2001). Glacial meltwater contributes to five major rivers and their tributaries, 

which drain the slopes of Mt. Rainier (Crandell, 1971). These rivers are located in deep canyons 

304-914 m below adjacent divides and 2,743-3,352 m below the nearby summit (Crandell, 1971). 

The stream gradients range from 30.5-244 m within Mt. Rainier National Park (Crandell, 1971). 

The steep slopes and glaciers of Mt. Rainier along with its proximity to population centers make 

it one of the most dangerous volcanoes in the United States. Mt. Rainier is only about 65 km 
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southeast of Tacoma, Washington (Lescinsky and Sisson, 1998) (Figure 1). There are also more 

than 100,000 people in the area that lives on top of ash and mudflow deposits originating from 

Mt. Rainier (Moran et al., 2000).  

During the last 10 ka, at least eleven eruptions have occurred (Hoblitt et al., 1995). One 

of these eruptions occurred ~5.6 ka and is believed to have removed a large portion of the summit 

(Reid et al., 2001). It also caused the Osceola Mudflow, which is the largest mudflow at Mt. 

Rainier during the last 10 ka (Hoblitt et al., 1998). The eruption and mudflow is estimated to have 

removed ~500 m of the summit resulting in a semicircular depression opening to the northeast 

(Fiske et al., 1963; Vallance and Scott, 1997). The outline of the previous summit is currently 

defined by Russell Cliff, Liberty Cap, Point Success, and Disappointment Cleaver (Vallance and 

Scott, 1997) (Figure 2). The volume removed is calculated to have been ~2.0-2.5 km
3
 and the 

depression is estimated to have been 0.6 km deep and 1.8-2.0 km across (Vallance and Scott, 

1997). This would make the size of the depression similar to the crater formed during the May 18, 

1980 eruption of Mt. St. Helens (Vallance and Scott, 1997). Subsequent lava flows and ice have 

since filled the depression forming a new summit cone (Reid et al., 2001). 
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A. 

 

  

            B.     

Figure 2: Views of Mt. Rainier: (A) View from the SW of Liberty Cap and Point Success 

(Modified from photo by Lee Siebert, 1969 (Smithsonian Institution), Retrieved  

February 10, 2011. http://www.volcano.si.edu/ world/volcano.cfm?vnum=1201-03-&volpage 

=photos&photo=045066), (B) View from the NE of Disappointment Cleaver, Russell Cliff, and 

Liberty Cap (Modified from photo by Walter Siegmund, Retrieved September 1, 2010. 

http://en.wikipedia.org/wiki/File:Mount_Rainier_5917s.JPG)



8 
 

CHAPTER III 
 

 

BACKGROUND INFORMATION 

 

Hazards 

Hazards associated with Mt. Rainier can have many different effects. This mostly 

depends on the location and distance away from the volcano. Hazards other than eruptions that 

are present are debris avalanches, lahars, and jökulhlaups. Debris avalanches occur due to the 

failure of an unstable slope. They can result from a magma injection similar to what occurred at 

Mt. St. Helens in 1980 (Hoblitt et al., 1998). They can also result from slopes weakened by 

glacial erosion and hydrothermal alteration (Hoblitt et al., 1998). The result is a rapidly moving 

landslide, which can transform into a lahar if it incorporates enough water (Hoblitt et al., 1998).  

Lahars, also called volcanic mudflows, are mixtures of water and at least 60 sediment 

by volume (Hoblitt et al., 1998). They are likely to occur at Mt. Rainier for several reasons. These 

include fairly steep slopes at the summit, the presence of glaciers, and altered volcanic rock. 

Lahars are especially dangerous because they can move quickly downstream and have limited 

warning times. Some lahars can travel over 70 km at speeds of tens to hundreds of km/hour 

(Hoblitt et al., 1998; Reid et al., 2001). Lahars can be initiated in several ways and can have 

different compositions. Small lahars typically result from small debris avalanches, heavy rain, or 

the sudden release of glacial melt water (Hoblitt et al., 1998). Large lahars usually result from the 

rapid melting of glacial ice and snow during a volcanic eruption (Dyurgerov and Meier, 2005).
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Lahars that contain large amounts of water and altered rock, such as clay, are known as cohesive 

lahars (Hoblitt et al., 1998). This type of lahar results from the relatively high amounts of water 

located within hydrothermally altered clay-rich rock (Hoblitt et al., 1998). Non-cohesive lahars 

result from water mixing with loose rock (Hoblitt et al., 1998). At Mt. Rainier, volcanism is the 

cause for large non-cohesive lahars (Hoblitt et al., 1998). These large non-cohesive lahars result 

from rapid melting of glacial ice during an eruption resulting in a massive amount of water that 

incorporates rock and sediment (Hoblitt et al., 1998). An important variable in the extent of lahars 

is the amount of water present. If there is a large amount of water available, then a greater volume 

of material can liquefy and travel greater distances (Hoblitt et al., 1998).  

Because of the large areas they can cover, lahars are perhaps the greatest hazard to those 

living near Mt. Rainier. There have been at least 60 lahars at Mt. Rainier during the last 10 ka 

(Hoblitt et al., 1998). As mentioned earlier, the largest was the Osceola Mudflow, 5.6 ka, which 

traveled over 120 km to the north and west and covered an area of at least 200 km
2
 (Vallance and 

Scott, 1997). It flowed all the way to the Puget Sound and filled valleys to depths of over 100 m 

(Vallance and Scott, 1997). The Osceola Mudflow was a cohesive lahar that resulted from a large 

hydrothermally altered debris avalanche likely caused by magma injection (Hoblitt et al., 1998). 

Since the Osceola Mudflow, there have been at least 6 other lahars caused by debris avalanches 

(Hoblitt et al., 1998). The largest of which was the Electron Mudflow, which does not appear to 

be related to an eruption (Crandell, 1971). It occurred due to slope failure on the west side of Mt. 

Rainier ~600 years ago and flowed west and north along the Puyallup River valley (Crandell, 

1997). In the Puget Sound Lowland, deposits from the Electron Mudflow cover an area of about 

36 km
2
 and are up to 7.9 m thick (Crandell, 1971). 

 Jökulhlaups are somewhat common on the slopes of Mt. Rainier. They are not inherently 

related to volcanic activity and result from the “sudden release of water stored at the base of 

glaciers or within the glacier ice” (Hoblitt et. al., 1998).  Many jökulhlaups incorporate sediment 

from channel walls and become lahars (Hoblitt et al., 1998). Although the timing of jökulhlaups 
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is unpredictable, they usually occur when there is a large input of melt water during times of 

unusually warm weather or when there are heavy rains (Hoblitt et al., 1998). Peak discharge from 

some jökulhlaups can exceed 100-year flood levels for a given valley (Hoblitt et al., 1998). In the 

past 100 years there have been at least 36 jökulhlaups (Hoblitt et al., 1998). Roads, buildings, and 

bridges have been destroyed or damaged ten times by jökulhlaups from Mt. Rainier since 1926 

(Hoblitt et al., 1998).  Jökulhlaups pose the greatest risk to the slopes and river valleys near Mt. 

Rainier. Hazards from jökulhlaups are rare beyond Mt. Rainier National Park (Hoblitt et al., 

1998).  

 

Glaciers 

The previous location and age of Mt. Rainier glaciers have been estimated using tree 

rings, lichens, tephra, and moraine locations (Harrison, 1956; Burbank, 1981). Burbank (1981) 

found that all Mt. Rainier glaciers were fairly synchronous in recessional behavior and were at or 

near Neoglacial maximums during the Little Ice Age up to the early 1800‟s. After 1850, glaciers 

slowly retreated until about 1920 (Driedger, 1993). Glaciers then retreated rapidly until 1950 

(Driedger, 1993). By 1950, the length of Mt. Rainier glaciers was reduced by ~25% from their 

Little Ice Age maximums (Driedger, 1993). Many glaciers then advanced until the early 1980‟s 

due to cooler temperatures (Driedger, 1993). Since the early 1980‟s, advances slowed followed 

by thinning and retreat (Driedger, 1993). The overall recession since the early 19
th
 century is 

attributed to a mean annual temperature rise of about 1.0°C (Burbank, 1981).   

Glacier monitoring at Mt. Rainier has been taking place since the late nineteenth century. 

The USGS was the first to map Mt. Rainier glaciers in 1898 (Nylen, 2001). Nisqually Glacier is 

one of the best-observed glaciers because of its accessibility. Harrison (1956) analyzed the 

change in the location of Nisqually Glacier terminus from 1750 to 1955. His study showed that 

the front of Nisqually Glacier retreated ~1750 m during this time despite a few minor advances 

(Harrison, 1956). More recently, three advances and retreats of Nisqually Glacier occurred 
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between 1965 and 1992 (Driedger, 1993). A period of retreat began in 1985 and resulted in a loss 

of 15.85 m between 1985 and 1991 (Driedger, 1993). Also, the terminus position of 12 Mt. 

Rainier glaciers have retreated an average of 1129 m from 1913 to 1994 (Nylen, 2001). The total 

glacier area decreased 23.9 km
2
 during the same period (Nylen, 2001). 

The cumulative net mass balance is a comparison between the amount of snow that 

accumulates during the winter compared to the amount of snow remaining at the end of the 

summer (Pelto, 2010). These measurements of snow accumulation and melt allow for the 

calculation of the cumulative net mass balance. The National Park Service has monitored the 

annual mass balances on Nisqually and Emmons glaciers since 2003. The areas and volumes are 

also recorded for all of Mt. Rainier‟s glaciers on a 20-year cycle. Measurements are taken three 

times a year and record the snow depth, density, and snow and ice melt (Riedel and Wenger, 

2009). The cumulative net mass balance for both the Emmons and Nisqually Glaciers is negative 

(Riedel and Wenger, 2009). In 2003, Emmons and Nisqually Glacier each had a net mass balance 

of -2.0 m.w.e. (meters water equivalent) (Riedel and Wenger, 2009). The overall trend is for an 

increasing negative net mass balance. From 2003-2008, the net balance of Emmons Glacier went 

from -2.0 m.w.e. to -6.0 m.w.e. and the net balance of Nisqually Glacier went from -2.0 m.w.e. to 

-8.0 m.w.e. (Riedel and Wenger, 2009). 

 

Eruptions Caused By Deglaciation 

Several studies have recognized a correlation between volcanic eruptions and glacial 

unloading. Some of the strongest evidence for a link between deglaciation and increased 

volcanism comes from Iceland. Iceland is unique because it is the location of an upwelling mantle 

plume beneath the Mid-Atlantic Ridge (Maclennan et al., 2002). There have been numerous 

studies on the effects of deglaciation on volcanism in Iceland that have shown an increase in 

mantle melting due to decreased pressure (Sigvaldason, 1992; Jull and McKenzie, 1996; Slater et 

al., 1998; Maclennan et al., 2002). It has been estimated that the average eruption rate was 20-30 
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times greater than today following the retreat of ice after the last glacial maximum around 11 ka 

(Slater et al., 1998). This increase in eruption rate is attributed to increased mantle melting caused 

by deglaciation (Slater et al., 1998). The volume of deposits also show that the amount of magma 

erupted was 30-50 times greater ~1.5 ka after deglaciation (Maclennan et al., 2002). This 

indicates that the magma was transported to the surface rather quickly. The glaciers‟ thickness is 

estimated to have been ~1,000 m in central Iceland, which caused up to 300 m of subsidence 

(Sigvaldason et al., 1992). The high rate of isostatic rebound that accompanied glacial retreat 

likely caused decreased lithostatic pressure and weaknesses in the crust, which could have 

triggered volcanism (Sigvaldason et al., 1992).  

Slater et al. (1998) also found differences in the compositions of interglacial and glacial 

lavas. Compared to the glacial lavas, the interglacial lavas were depleted in trace element 

concentrations (Slater et al., 1998). This is interpreted to be a result of mantle melting at shallow 

depths as the ice retreated (Slater et al., 1998). Using measurements of (
226

Ra/
230

Ra) ratios in the 

basalt, melt transport times were found to be consistent with the increased eruption rates seen  

1-3 ka after deglaciation (Slater et al., 1998).    

 Retreating glaciers in Iceland seem to be having a possible ongoing effect on volcanic 

activity. Pagli and Sigmundsson (2008) studied the effect of retreating glaciers on volcanism at 

the Vatnajökull ice cap. They found that from 1890-2003; a total volume loss of ~435 km
3
 of ice 

was indicated by mass balance measurements (Pagli and Sigmundsson, 2008). However, the 

overall melt production due to deglaciation is much less than in the past. The ice cap at 

Vatnajökull is over 3 times smaller and is currently thinning at ~0.5 m/yr compared to ~2 m/yr 

during the time following the last glacial maximum (Pagli and Sigmundsson, 2008). Pagli and 

Sigmundsson (2008) indicate that the loss of ice at Vatnajökull can increase mantle melting at a 

rate of 0.014 km
3
/yr. This relates to an increased magma production of around 10% (Pagli and 

Sigmundsson, 2008). 
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 Another area that has been studied is located in eastern California. Glazner et al. (1999) 

found that over the last 800 ka there is a relationship between decreases in volcanism and glacial 

maximums. This relationship is explained to be a result of an increase in lithostatic pressure 

caused by glaciers, which inhibits dike formation (Glazner et al., 1999). Dike formation is 

subsequently caused by a decrease in confining pressure and increasing decompression melting as 

a result of glacial unloading (Jellinek et al., 2004).  Jellinek et al. (2004) also showed that there is 

a connection between the rate of change in ice volume and the frequency of eruptions. Therefore, 

they theorize that the rate of change of ice volume controls dike formation instead of the total 

volume of ice and that “volcanism is a response ultimately controlled by the dynamics of dike 

formation” (Jellinek et al., 2004). Furthermore, they calculated the time lags between glacial 

unloading and volcanism. The results show a marked difference between different types of 

volcanism. Their calculated time lags for silicic volcanism are 3.2 ± 4.2 ka, and 11.2 ± 2.3 ka for 

basaltic volcanism (Jellinek et al., 2004).  

 Ice cores from Greenland show a record of past volcanic eruptions. For example, 

Zielinski et al. (1994) found that there were three times as many volcanic events between 7 ka 

and 9 ka as compared to the last 2 ka based on SO4
2-

 concentrations in the top 1,468 m of ice. 

This could provide additional evidence of increased global volcanism caused by deglaciation 

following the end of the last glacial maximum. It is also possible that layers of ice with higher 

concentrations of SO4
2-

 result from eruptions at high latitudes such as in Alaska and Iceland 

(Zielinski et al., 1994). These areas would have been heavily glaciated and would be the most 

likely areas to have had increased volcanism in the early Holocene (Zielinski et al., 1994).  

 One factor that could affect the possibility of an eruption due to decompression is the 

depth of Mt. Rainier‟s magma chamber. Although the exact depth is unknown, earthquake 

activity provides an indication to the possible depth of the magma chamber. Mt. Rainier averages 

one to two earthquakes each month, which makes it the most seismically active Cascade volcano 

(Moran et al., 2000). Unger and Decker (1970) studied microearthquake activity beneath Mt. 
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Rainier and found that ~8% of the earthquakes measured had epicenters beneath the summit at 

depths of 0.3 km to 20 km. Approximately 75% of the microearthquakes measured had depths 

that were <5 km (Unger and Decker, 1970). Moran et al. (2000) measured earthquakes beneath 

Mt. Rainier and found that the majority were located 0.0 km to 0.8 km below sea level or ~4-5 

km beneath the summit. Tomography results also show a low velocity anomaly of hot/partially 

molten bodies >6 km beneath the summit (Moran et al., 2000). These studies suggest that the top 

of the magma chamber could be ~4-6 km beneath the summit. However, magmatic gases and 

fluids could be the cause of some of the earthquakes beneath the summit (Moran et al., 2000). 

 

Climate 

Large-scale atmospheric circulation is the primary control on glaciers around the world 

(Meier et al., 2003). Therefore it is important to consider the climate and climate change when 

studying Mt. Rainier glaciers. Mt. Rainier receives a large amount of precipitation and has 

previously held several records for snowfall, including 28.5 m in 1971-1972 at the Paradise 

Ranger Station (Leffler et al., 2001) (See Appendix E for additional information) . The Paradise 

Ranger Station is located at 1,652 m and averages greater than 15.24 m of snow each year 

(Leffler et al., 2001). The greatest amount of snow typically falls from 1,219-2,438 m in elevation 

because the freezing line in the area is typically ~1,219 m (Leffler et al., 2001). The large amount 

of precipitation at Mt. Rainier results from its topography and location. Storm systems move in 

from the Pacific Ocean and bring moist air, which is forced to rise as it hits the Cascade Range 

causing abundant precipitation (Leffler et al., 2001).   

Since 1850, the amounts of carbon dioxide in the atmosphere and global temperatures 

have steadily increased (Mote, 2003). Global surface temperatures rose 0.6º±0.2ºC during the 

twentieth century (Mote, 2003). In the Pacific Northwest, temperatures have also been increasing. 

Evidence that glacier decreases at Mt. Rainier could be the result of climate change comes from 

measured temperature trends and snow water equivalent measurements. Ninety-one percent of 
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weather stations located in Washington and Oregon had an increasing trend in annual temperature 

(Mote, 2003). Warmer temperatures could cause snow to begin melting earlier in the spring and 

lead to a longer period for melting to occur. The majority of rivers in the Pacific Northwest show 

a trend for earlier snowmelt timing (Stewart et al., 2004). These changes in snowmelt runoff are 

mostly connected to warmer spring air temperatures (Stewart et al., 2004). 
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CHAPTER IV 
 

 

GLACIER CHANGE 

 

Data Sources and Description  

 To determine recent changes in the area and terminus locations of Mt. Rainier‟s glaciers, 

seven Landsat thermal infrared scenes from 1985-2009 were used. The four scenes from 1985-

1998 are from Landsat 5, which have a spatial resolution of 120 m for Band 6 (thermal infrared 

band). The three scenes from 2005-2009 are from Landsat 7, which have a spatial resolution of  

60 m for Band 6. The Landsat 7 scenes contain data gaps caused by a failure of the scan line 

corrector in 2003. The failure of the scan line corrector caused duplicated scan lines. As a result, 

data gaps occur when the duplicated scan lines are removed. Landsat data was downloaded from 

the USGS using EarthExplorer at http://edcsns17.cr.usgs.gov/NewEarthExplorer/. The Landsat 

scenes are from August 1985, August 1988, September 1991, September 1998, August 2005, 

August 2007, and September 2009 (Table 1); these datasets represent all late summer Landsat 

datasets covering the study area that were suitable for analysis. Thermal infrared images were 

used instead of visible satellite images because thermal infrared images show the emitted 

radiation. Therefore glaciers appear much darker than surrounding areas of bare, vegetated, and 

snow-covered ground, making glacier boundaries easier to detect when compared to visible 

satellite images. To get the best view of the glaciers, all of the satellite images are from either 

August or September when seasonal snow cover is at a minimum. Each scene was also selected
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based on the least amount of cloud cover and are intended to provide a good representation of 

glacier change from 1985-2009. 

 

Table 1: Details for each Landsat scene used in this study 

 

Year Satellite Date Acquired Band 6 Resolution 

1985 Landsat 5 August 23 120 m 

1988 Landsat 5 August 31 120 m 

1991 Landsat 5 September 25 120 m 

1998 Landsat 5 September 12 120 m 

2005 Landsat 7 August 6 60 m 

2007 Landsat 7 August 28 60 m 

2009 Landsat 7 September 18 60 m 

 

 

 

Measurements were made to characterize twenty glaciers on Mt. Rainier. Some of the 

glacier boundaries were difficult to distinguish on the upper slopes of Mt. Rainier. As a result, 

only eleven measurements were made for each year because several glaciers that are connected or 

adjacent to each other were grouped together. Many of the glacier boundaries near the summit 

remain stationary for each scene. These boundaries were determined using previous glacier maps 

and aerial photographs along with satellite images. Aerial photographs from 2007 were 

downloaded from Portland State University‟s website: Glaciers of the American West 

(http://glaciers.us/). The individual glaciers that were mapped are the Winthrop, Carbon, Inter, 

Kautz, and Emmons Glaciers. The glaciers that were grouped together are the North 

Mowich/Edmunds, Puyallup/South Mowich, Tahoma/South Tahoma, Nisqually/Wilson, 

Cowlitz/Ingraham/Paradise, and Whitman/Ohanapecosh/Fryingpan Glaciers (Figure 3).  
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Figure 3: Individual and grouped glaciers measured in this study 

 

Methods 

 ArcMap was used to analyze the images, including mapping the extent and measuring 

the area of each glacier/glacier group in each Landsat scene. First, the extent of each glacier was 

mapped for each year. Then the area of each glacier/glacier group was calculated in ArcMap. 

Glacier area measurements were made in square kilometers and were rounded to three decimal 

places. The change in glacier extent and area was calculated for the time periods of 1985-1988, 
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1988-1991, 1991-1998, 1998-2005, 2005-2007, and 2007-2009. Then the change in area was 

calculated for the entire time period from 1985-2009. From the glacier area measurements, the 

rate of glacier change (both as area and as percent) was calculated and compared for each time 

period. Data for glacier area and the rate of change in area was then used in several ways. First, 

the measured glacier areas found in this study were compared to glacier area measurements taken 

by the USGS to identify any differences. Glacier measurements by the USGS were made in 1994. 

To compare the glacier areas measured by the USGS to the glacier areas measured in this study, 

the areas for 1994 were interpolated using the average change in area between 1991 and 1998. 

Then a comparison was made between the total glacier area and rate of change between USGS 

measurements from 1971-1994 and this study‟s measurements from 1985-2009. Finally, glacier 

area measurements for 2005 were compared to area measurements that were available from the 

GLIMS database for the same year. 

 

Results 

Area Changes 

The measured glacier/glacier group areas show a consistent trend of decreasing area from 

1985-2009 (Table 2). The total glacier area decreased during all six time periods (Appendix A). 

During this time, the observed area of Mt. Rainier glaciers decreased from 85.590 km
2
 to 81.355 

km
2
, which is 4.235 km

2
 or 5.32% (Figure 4). The area also decreased for the majority of each 

individual glacier/glacier group for each Landsat scene. Only one glacier/glacier group increased 

in area during any of the time periods. This was Emmons Glacier from 1988-1991 and 1991-

1998. However, the increases that are seen are small. The largest increase was 0.013 km
2
 or 0.004 

km
2
 per year, and occurred from 1988-1991. Inter Glacier did not increase in area but had a 

decrease of less than 0.003 km
2
 from 1991-1998 and a decrease of 0.0003 km

2
 from 1998-2005. 

Pictured below are Landsat scenes showing area comparisons between 1985 and 2009 (Figure 5, 

6) (See also Appendix B, C). 
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Table 2: Glacier/glacier group areas and total area measured for each Landsat scene 

Glacier Name Total Glacier Area (km
2
) 

  1985 1988 1991 1998 2005 2007 2009 

Carbon/Russell 11.426 11.261 11.062 10.920 10.828 10.746 10.664 

Cowlitz/Ingraham/Paradise 9.437 9.212 9.193 9.071 9.021 8.992 8.929 

Emmons 11.164 11.161 11.174 11.178 11.125 11.115 11.108 

Inter  0.806 0.801 0.790 0.787 0.787 0.784 0.780 

Kautz 2.244 2.217 2.214 2.163 2.119 2.098 2.075 

Nisqually/Wilson 6.094 6.072 5.974 5.969 5.912 5.883 5.846 

North Mowich/Edmunds 9.440 9.261 9.070 8.919 8.811 8.784 8.733 

Puyallup/South Mowich 8.365 8.199 8.107 7.950 7.823 7.794 7.762 

Tahoma/South Tahoma 9.688 9.585 9.427 9.339 9.293 9.266 9.261 

Whitman/Ohanapecosh/ 

Fryingpan 

 

7.613 7.415 7.307 7.251 7.166 7.162 7.128 

Winthrop 9.312 9.252 9.214 9.127 9.089 9.087 9.067 

Total 85.590 84.437 83.533 82.674 81.975 81.711 81.355 
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Figure 4: Change in the total glacier area measured in this study from 1985-2009 

 

81.0 

81.5 

82.0 

82.5 

83.0 

83.5 

84.0 

84.5 

85.0 

85.5 

86.0 

86.5 

1985 1990 1995 2000 2005 2010 

k
m

² 

Year 



22 
 

 

 

Figure 5: Measured glacier areas from 1985-2009 

 



23 
 

 

 

Figure 6: Measured glacier areas from 1985 and 2009 

 

Decreasing area trends also appear when looking at the total rate of change and percent 

change per year for each period. The total change in area per year and percent change in area per 

year show an overall decrease in area and is negative for all six time periods (Figure 7). The 

largest average change in area occurred from 1985-1988, when the total glacier area decreased an 

average of 0.385 km
2
 or 0.449 % per year. The rate of change in total area then decreased during 

the time periods of 1988-1991, 1991-1998, and 1998-2005. During the time period of 1998-2005, 

the smallest rate of change per year was measured with an average decrease of 0.100 km
2
 or 
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0.121% per year. The rate of change in area then rose to -0.132 km
2
 or -0.161% per year from 

2005-2007. The rate of loss continued to increase from 2007-2009 with an average change in area 

of -0.178 km
2
 or -0.218% per year. 

 

Figure 7: Average change and percent change in the total glacier/glacier group area per year for 

six time periods between 1985 and 2009  

   

The Cowlitz/Ingraham/Paradise Glaciers had the highest average change in area per year, 

which was -0.075 km
2
 per year from 1985-1988 (Table 3). That time period also had the highest 

rate of loss in total area with an average loss of 0.384 km
2
 per year. The overall trend is for higher 

rates of loss during the time periods of 1985-1988 and 1988-1991 (Figure 8). This is followed by 

a decrease in rates of loss from 1991-1998 and 1998-2005 and an increase in rates of loss from 

2005-2007 and 2007-2009. Only Emmons Glacier and the Tahoma/South Tahoma Glaciers did 

not show increases in the rate of area loss from 2005-2007 to 2007-2009.     
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Table 3: Average change in area per year for each glacier/glacier group (km
2
) 

 

 Glacier Name 
1985-

1988 

1988-

1991 

1991-

1998 

1998-

2005 

2005-

2007 

2007-

2009 

Carbon/Russell -0.055 -0.066 -0.020 -0.013 -0.041 -0.041 

Cowlitz/Ingraham/Paradise -0.075 -0.006 -0.017 -0.007 -0.015 -0.031 

Emmons -0.001 0.004 0.001 -0.008 -0.005 -0.004 

Inter  -0.002 -0.004 0.000 0.000 -0.001 -0.002 

Kautz -0.009 -0.001 -0.007 -0.006 -0.011 -0.012 

Nisqually/Wilson -0.007 -0.033 -0.001 -0.008 -0.014 -0.018 

North Mowich/Edmunds -0.060 -0.064 -0.022 -0.015 -0.014 -0.025 

Puyallup/South Mowich -0.055 -0.031 -0.022 -0.018 -0.015 -0.016 

Tahoma/South Tahoma -0.034 -0.053 -0.013 -0.007 -0.013 -0.002 

Whitman/Ohanapecosh/Fryingpan -0.066 -0.036 -0.008 -0.012 -0.002 -0.017 

Winthrop -0.020 -0.013 -0.012 -0.005 -0.001 -0.010 

Total -0.384 -0.301 -0.123 -0.100 -0.132 -0.178 
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Figure 8: Average change in area per year for each glacier/glacier group for six periods from 

1985-2009 
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Tahoma/South Tahoma, and the Carbon/Russell Glaciers do not show an increase in percent loss 

over that same period. 

 

Table 4: Average percent change in glacier/glacier group area per year 

 

 Glacier Name 
1985-

1988 

1988-

1991 

1991-

1998 

1998-

2005 

2005-

2007 

2007-

2009 

Carbon/Russell -0.48% -0.59% -0.18% -0.12% -0.38% -0.38% 

Cowlitz/Ingraham/Paradise -0.80% -0.07% -0.19% -0.08% -0.16% -0.35% 

Emmons -0.01% 0.04% 0.00% -0.07% -0.04% -0.03% 

Inter  -0.22% -0.44% -0.06% -0.01% -0.19% -0.22% 

Kautz -0.40% -0.05% -0.33% -0.28% -0.50% -0.55% 

Nisqually/Wilson -0.12% -0.54% -0.01% -0.14% -0.24% -0.31% 

North Mowich/Edmunds -0.63% -0.69% -0.24% -0.17% -0.15% -0.29% 

Puyallup/South Mowich -0.66% -0.38% -0.28% -0.23% -0.19% -0.21% 

Tahoma/South Tahoma -0.35% -0.55% -0.13% -0.07% -0.14% -0.03% 

Whitman/Ohanapecosh/Fryingpan -0.86% -0.49% -0.11% -0.17% -0.03% -0.24% 

Winthrop -0.22% -0.14% -0.14% -0.06% -0.01% -0.11% 

Total -0.45% -0.36% -0.15% -0.12% -0.16% -0.22% 
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Figure 9: Average percent change per year for each glacier/glacier group during six time periods 

from 1985-2009 

 

 

Area Comparison 

Interpolated glacier areas for 1994 from this study were compared to glacier areas 

measurements made by the USGS in 1994 (Table 5). The majority of the measurements are 
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2
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2
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2
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-0.051 km
2
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Table 5: Comparison between the areas measured by the USGS in 1994 and the areas interpolated 

for 1994 from the areas measured in this study 

 

Glacier Name    USGS (1994) This Study (1994) 
Difference  

(km²) 

Carbon/Russell 11.010 11.001 -0.009 

Cowlitz/Ingraham/Paradise 8.810 9.140 0.330 

Emmons 11.210 11.176 -0.034 

Inter  0.790 0.789 -0.001 

Kautz 2.160 2.192 0.032 

Nisqually/Wilson 6.010 5.972 -0.038 

North Mowich/Edmunds 7.610 9.006 1.396 

Puyallup/South Mowich 7.980 8.040 0.060 

Tahoma/South Tahoma 9.460 9.390 -0.070 

Whitman/Ohanapecosh/Fryingpan 7.240 7.283 0.043 

Winthrop 9.210 9.177 -0.033 

Total 81.490 83.165 1.675 

 

The total glacier area measured by the USGS ranged from 82.17 km
2
 in 1971 to 81.49 km

2
 in 

1994, whereas the total glacier area measured in this study ranged from 85.590 km
2
 in 1985 to 

81.355 km
2
 in 2009. The calculated rate of change in total glacier area from this study was also 

greater than that of the USGS measurements. Using USGS measurements, the total glacier area 

decreased 0.68 km
2
 or 0.028 km

2
 per year from 1971-1994. Meanwhile, the measurements from 

this study show an overall decrease of 4.235 km
2
 or 0.169 km

2
 per year from 1985-2009.  

 Glacier area data for 2005 was available from the GLIMS project database for nine of the 

glaciers/glacier groups mapped in this study. The overall difference in area of these nine 

glaciers/glacier groups when compared to areas from this study is -1.693 km
2
 or -2.5% (Table 6). 

Six out of the nine measurements from this study were smaller than the GLIMS data. However, 
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the majority of measurements were similar. Only two glacier group measurements had 

differences greater than 0.45 km
2
. These were the North Mowich/Edmunds Glaciers, which had a 

difference of 1.246 km
2
 (~15.1%), and the Tahoma/South Tahoma Glaciers, which had a 

difference of -1.845 km
2
 (~16.6%).   

 

Table 6: Comparison between GLIMS data and data from this study for glacier areas in 2005 

 

 

Glacier Name GLIMS data (2005) This Study (2005) Difference (km
2
) 

Carbon/Russell 11.231 10.828 -0.402 

Emmons 11.042 11.125 0.083 

Inter 0.841 0.787 -0.054 

Kautz 1.826 2.119 0.294 

North Mowich/Edmunds 7.565 8.811 1.246 

Puyallup/South Mowich 8.247 7.823 -0.423 

Tahoma/South Tahoma 11.138 9.293 -1.845 

Whitman/Ohanapecosh/Fryingpan 7.608 7.166 -0.442 

Winthrop 9.238 9.089 -0.149 

Total 68.735 67.042 -1.693 

 

 

 

Discussion 

 In the twentieth century, glaciers worldwide have shown significant decreases (WGMS, 

2008). Consistent glacier retreat occurred during the 1940‟s and again from the mid 1980‟s to 

present (WGMS, 2008). This corresponds well to glacier research at Mt. Rainier, which indicates 

that major glaciers advanced from the 1950‟s to the early 1980‟s followed by retreat since the 

mid-1980‟s (Nylen, 2001). Other Cascade glaciers also experienced similar glacial advances from 

the 1950‟s to the 1980‟s (Nylen, 2001). Beginning in the mid-1970‟s, most Cascade glaciers 
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began retreating (Nylen, 2001). By 1988, only 3 out of 107 monitored Cascade glaciers were 

advancing and all of the glaciers were retreating by 1992 (Nylen, 2001).  

 The data suggests a continuing trend of decreasing glacier area at Mt. Rainier. 

Measurements from the seven Landsat scenes show that the total area of Mt. Rainier glaciers 

included in this study decreased 4.235 km
2
 from 1985-2009. The rate of glacier loss also 

increased over the last decade. Between 2005 and 2009, the average decrease in total area rose -

0.012 km
2
 per year. When comparing the glacier loss between north and south facing 

glaciers/glacier groups, south facing glaciers had a greater total percent decrease in area (Figure 

10) (See also Appendix D). The trends for north and south facing glaciers/glacier groups are 

similar. However, south facing glaciers/glacier groups had greater decreases in area from 1985-

1988 and 2005-2009. This corresponds with a previous study that showed larger decreases in area 

and greater retreat in terminus positions of south facing glaciers compared to north facing glaciers 

(Nylen, 2001). 

 

 

Figure 10: Comparison of percent change in area between north and south facing glaciers of Mt. 

Rainier 
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 Comparisons between area measurements made in this study show many similarities to 

those from the USGS and the GLIMS database. The total difference in area of the glaciers/glacier 

groups compared to GLIMS measurements was -1.693 km
2
. This study complements the work 

done through the GLIMS project by providing a detailed analysis of glacier change from 1985-

2009. A comparison of the change in total area of Mt. Rainier glaciers to USGS measurements 

shows that the total area measured in this study is larger than that which was previously measured 

by the USGS. In this study, a decrease of 4.235 km
2
 was measured from 1985-2009. According to 

USGS measurements, the same glacier/glacier groups experienced a decrease of 0.68 km
2
 from 

1971-1994 (Figure 11). However, the majority of glacier/glacier group area measurements are 

very similar to those made by the USGS. Much of the discrepancy, in 1994 at least, is due to the 

much larger areas of the North Mowich/Edmunds and the Cowlitz/Ingraham/Paradise glaciers 

that were measured in this study.  

 

 

Figure 11: Comparison of glacier area measurements from this study to USGS measurements 
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made by the USGS. One potential reason for the discrepancy is differences in the placement of 

boundaries between glaciers, which would affect measurements for individual glaciers but not 

total glacier area. Measurements made in this study also may include snow patches or permanent 

ice that is not included in USGS measurements.  

 It appears that Landsat 7 scenes provide a more accurate image in which to manually 

delineate glacier area than Landsat 5 scenes. The total area and rate of change in area measured 

with Landsat 7 scenes is much more similar to measurements made by the USGS. One 

explanation is the difference in the spatial resolution between Landsat 5 and Landsat 7 images. 

The maximum spatial resolution of Landsat 7 images (60 m/pixel) is double that of Landsat 5 

images (120 m/pixel). The areas that were measured in this study using Landsat 5 images were 

generally larger and had greater rates of decrease than the areas measured using Landsat 7 images 

(Figure 12). Some of the dissimilarities could be attributed to error differences (based on 

resolution) between Landsat 5 and Landsat 7 images. The error in associated with measuring 

glacier extents in this study is estimated to be ≤50% for each pixel. Therefore, Landsat 5 images 

could have a higher percent error compared to Landsat 7 images due to the larger pixel size. 

However, it is likely that most of the differences are an accurate representation of the glacier 

areas. The area measurements using Landsat 5 scenes (1985-1998) show a total decrease of 2.916 

km
2
, which results in an average loss in area of 0.224 km

2
 per year during that time period. The 

Landsat 7 scenes (2005-2009) show a total decrease of 0.62 km
2
, which results in an average 

decrease of 0.155 km
2
 per year. However, the rate of decrease in area is still higher than the 0.028 

km
2
 per year calculated from USGS measurements from 1971-1994. 
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A. 

 

Figure 12a: Measured glacier areas for 1985, 1988, 1991, and 1998 
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B. 

 

Figure 12b: Measured glacier areas for 2005, 2007, 2009 
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CHAPTER V 
 

 

ERUPTION HAZARDS 

 

Methods 

 Hekkers (2009) produced two different models that reconstructed glacier area at Mt. 

Rainier during the Holocene. Model 1 uses the current mass balance conditions of Emmons and 

Nisqually Glaciers for equilibrium line altitude (ELA) reconstruction (Hekkers, 2009). Model 2 is 

based on the best fit to the extent of glacier during the Garda advance (160 cal yr BP), and has 

adjusted mass balance parameters to fit Garda moraines (Hekkers, 2009). The results of the two 

models were averaged for the time period of 11 ka to 160 cal yr BP (Table 7). Two more recent 

measurements for glacier area were also used. Those areas are from USGS measurements from 

1913 and 1994 (Nylen, 2001).   

 The eruptive history for Mt. Rainier and other Cascade volcanoes was compiled 

(Appendix F). This data came from deposits such as lava flows and ash layers that have been 

identified and dated in previous studies (Ewert et al., 1994; Hildreth and Fierstein, 1997; 

Kovanen et al., 2001; Harris, 2005; Sisson and Vallance, 2009). The eruptions of Mt. Rainier 

were compared to the modeled glacier area over the last 10 ka. It is assumed that the glacier 

coverage at Mt. Rainier can reasonably be used as a good proxy of glacier coverage throughout 

the Cascades. A cumulative curve for Cascade eruptions was then created to compare eruptions to 

modeled glacier area to see if any correlations exist.  
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Table 7: Mt. Rainier modeled glacier area and average modeled area, along with two more recent 

USGS area measurements 

 

Cal Yr BP Hekkers (2009) Modeled Glacier Area Glacier Area Data 

      USGS Glacier Area Measurements 

17    87.4 

98    111.3 

 Model 1 Model 2 Average Modeled Area (km
2
) 

160 192.7 123.8 158.3 

550 192.7 123.8 158.3 

2,130 161.5 99.1 130.3 

2,790 192.7 123.8 158.3 

3,450 265.8 233.9 249.9 

4,890 253 176 214.5 

5,520 161.5 92.3 126.9 

6,490 265.8 212.3 239.1 

7,940 118.5 71.5 95.0 

8,200 173.2 115.7 144.5 

8,600 67.8 58.7 63.3 

9,260 73.5 64.7 69.1 

10,050 29.4 12.4 20.9 

10,170 193.7 131.5 162.6 

10,400 36.3 20.1 28.2 

10,990 327.3 303.8 315.6 

11,150 26.7 11.8 19.3 

11,490 173.2 123.8 148.5 
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Results 

 The earliest eruption of Mt. Rainier during the last 10 ka occurred ~9.8 ka (Figure 13). At 

this time glaciers covered less than 50 km
2
, which according to the glacier area models is one of 

the lowest glacier extents following the last ice age (~1.2 ka prior to the eruption). A period of 

activity then occurred from ~7.4-5 ka. There were at least eight eruptions during this time. For 

this 2.4 ka period, the modeled glacier area fluctuates several times resulting in no obvious 

correlations between glacier area and the timing of eruptions during that time frame. However, 

the increase in activity begins ~3.5 ka following the last glacial maximum. Two more recent 

periods of volcanic activity occurred ~2.2 ka and ~150 cal yr BP At the time of each of these 

eruptions, the average modeled glacier area is similar. The average modeled glacier area 2.2 ka is 

~133 km
2 
and the average modeled glacier area 150 cal yr BP is ~157 km

2
. The eruption 2.2 ka 

occurred near a low point in the average modeled glacier area and was ~1.25 ka after the last peak 

in glacier area 3.45 ka. The eruption ~150 cal yr BP occurred ~3.3 ka after the last peak in the 

average modeled glacier area.    
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Figure 13: Modeled area of Mt. Rainier glaciers compared to timing of Mt. Rainier eruptions 

during the last 10 ka 

 

 A cumulative curve shows the number of Cascade eruptions compared to the modeled 

glacier area (Figure 14). The first eruptions within the last 10 ka for all Cascade volcanoes 

occurred from ~10-9.5 ka when there were 2 eruptions. They occurred at a low point in the 

modeled glacier area, which is ~1-1.5 ka following the last ice age. A low amount of volcanic 

activity is seen from 9.5-7.7 ka with only 2 eruptions occurring during this time. At that time, the 

modeled glacier area is ~150 km
2
 and increasing. Then there is an increase in activity with an 

average of 1 eruption every 143 years from ~7.7-4.75 ka. During this time, the modeled glacier 

area increased to 239 km
2
 at 6.49 ka before decreasing to a low of 215 km

2
 at 5.52 ka. The 

eruption rate then decreased with the next eruption not occurring until ~3.8 ka. This is followed 

by an increase in the eruption rate at ~2.3 ka. At this time, the modeled glacier area decreases to 
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below 150 km
2
. The eruption rate remained fairly high between ~2.3-1 ka with an average of 1.7 

eruptions every 100 years. Then the eruption rate decreased between ~1 ka-300 cal yr BP with 

only 3 eruptions occurring. During this time, the modeled glacier area increases to 158.25 km
2
; 

this is the largest glacier area during the last 2 ka. Finally, the eruption rate has increased during 

the last ~300 cal yr BP, with 10 eruptions occurring during this time. Meanwhile, during the last 

300 cal yr BP, glacier area has decreased from a modeled area of 158.25 km
2
 to the present area 

of ~87 km
2
. 

 

 

Figure 14: Modeled area of Mt. Rainier glaciers compared to a cumulative curve of the total 

number of eruptions of Cascade volcanoes during the last 10 ka 

 

Discussion 

 

 The total average modeled glacier area at the time of the eleven eruptions of Mt. Rainier 

over the last 10 ka was 165.14 km
2
. This is slightly higher than the overall average modeled area, 

which is 139 km
2
. It is also greater than the current area of Mt. Rainer glaciers. Therefore, glacier 

area does not appear to have been significantly lower during times of eruptions during the past 10 

ka. However, there is a period of increased activity between ~7.4-5 ka at Mt. Rainier. Eight of the 
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eleven known eruptions during the last 10 ka occurred during this period. There is also a slight 

increase in the number of eruptions in the Cascade Range from ~7.7-4.75 ka. During that time, 

twenty-one eruptions occurred. The only other time period with a greater number of eruptions is 

during the last ~2.3 ka. This could suggest an increase in melting due to decompression of the 

magma chamber ~3.3-6.25 ka following the last glacial maximum. The time lag between the end 

of the glacial maximum and increased volcanic activity is greater than the 1.5 ka lag that occurred 

in Iceland following the last glacial maximum. However, because of the different geologic setting 

it is difficult to directly compare models for Iceland to deglaciation at Mt. Rainier. Icelandic 

volcanoes could have deeper magma chambers as a result of being located on a spreading center 

and hotspot. Iceland is also located on thinner oceanic crust whereas Mt. Rainier is located on 

thicker, continental crust. Also, increased volcanism in Iceland resulted from the removal of large 

ice sheets, which would likely result in much greater isostatic rebound and decompression 

compared to the removal of glaciers on the slopes of Mt. Rainier. However, a time lag of ~3.3-

6.25 ka does fit into the range of 3.2±4.2 ka suggested by Jellinek et al. (2004) for silicic 

volcanism in California, which is more comparable to the geologic setting at Mt. Rainier.  

 There is also evidence that more recent eruptive patterns of Cascade volcanoes could 

correlate to glacial coverage. During the last ~2.3 ka, there have been two periods with an 

increased eruption rate for Cascade volcanoes. From ~2.3-1 ka, 22 eruptions occurred. This 

increase in eruptions coincides with a decrease in modeled glacier area, which decreased from 

249.85 km
2
 to 130.3 km

2
 from 3.45-2.13 ka. An increase in the modeled glacier area to 158.25 

km
2
, 550 cal yr BP coincides with a decrease in eruptions from ~3-1 ka. Then, during the last 300 

cal yr BP, the modeled glacier area decreased from 158.25 km
2
 to the present glacier area of ~87 

km
2
. During which time the eruption rate increased. However, the modeled glacier area during 

the last ~2.3 ka is still larger than the glacier from ~10-8.5 ka, when the eruption rate was very 

low. Therefore, it is unclear if the recent increase in eruptions is solely related to glacier area. 

There is also the possibility that the large number of recent eruptions compared to the number of 
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eruptions we are aware of during the last 10 ka could be a result of the erosion of volcanic 

deposits. This could cause some eruptions to go unnoticed due to the lack of preservation of older 

volcanic deposits.  
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CHAPTER VI 
 

 

CONCLUSIONS 

 

 Mt. Rainier is the most glaciated volcano in the conterminous United States. Decreases in 

glacier coverage have been documented during several periods in the twentieth century. To 

measure glacier area from 1985-2009, seven Landsat scenes were used. Glacier areas measured in 

this study show a continuing trend of loss in glacier area, consistent with USGS and GLIMS 

measurements. The possibility of an increased risk for eruptions at Mt. Rainier due to the removal 

of glaciers from its slopes was then examined. This was accomplished by comparing past 

eruptions of Mt. Rainier and other Cascade volcanoes to the modeled glacier area of Mt. Rainier 

for the last 10 ka.  

 It is reasonable to presume that glacier area will continue to decrease in the short term 

based on the recent trends in glacier change at Mt. Rainier. The observed area of Mt. Rainier 

glaciers decreased from 85.590 km
2
 to 81.355 km

2
 (5.32%) from 1985-2009.

 
Individual glacier 

areas also decreased continuously with only a couple exceptions during the same time period. The 

change in area per year and percent change in total area per year is negative for all six time 

periods studied. The rate of glacier loss also increased between 2005 and 2009. Therefore, if 

glacier loss continues, the risk of hazards such as jökulhlaups and lahars could be enhanced due 

to the increased amount of glacial melt. Decreases in glacier ice at Mt. Rainier could also lead to 

an increased risk of eruptions due to decompression of the magma chamber. A continuation of the 
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glacier loss seen in this study could be enough to trigger decompression, especially if Mt. Rainier 

has a shallow magma chamber. However, it is unclear what the time lag would be between glacier 

loss and an eruption as well as the amount and rate of glacier loss that would be needed. An 

increase in eruptions occurred ~7.4-5 ka, which is ~3.6-6 ka following the last glacial maximum. 

During the last ~2.3 ka, eruption rates of Cascade volcanoes have increased during times when 

the modeled glacier area decreased. This strongly suggests a correlation between eruption rates 

and glacier coverage. However, more studies are needed at similar volcanoes with an extensive 

amount of glaciation on their slopes to confirm this relationship. Mt. Rainier‟s magma plumbing 

system also needs to be studied further to better understand its geometry and depth. 

In conclusion, Mt. Rainier glaciers show continuous decrease in area from 1985-2009, 

and there is possibly a link between increased eruption rates and decreases in glacial ice. Glaciers 

at Mt. Rainier should therefore continue to be closely monitored in the future because of a 

possible increased risk of jökulhlaups, lahars, and eruptions. Satellite-based remote sensing, such 

as the Landsat scenes used in this study, can be a valuable tool for monitoring Mt. Rainier 

glaciers. Future monitoring through remote sensing would allow glacier areas to be consistently 

tracked and provide data needed to assess hazard risks. 
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APPENDICES 
 

 

 

Appendix A: Measured changes in glacier area (km
2
) 

 

 Glacier Name 
1985-

1988 

1988-

1991 

1991-

1998 

1998-

2005 

2005-

2007 

2007-

2009 

1985-

2009 

Carbon/Russell -0.165 -0.199 -0.142 -0.092 -0.082 -0.081 -0.761 

Cowlitz/Ingraham/Paradise -0.226 -0.019 -0.122 -0.049 -0.030 -0.063 -0.508 

Emmons -0.004 0.0133 0.004 -0.053 -0.010 -0.007 -0.057 

Inter Glacier -0.005 -0.011 -0.003 0.000 -0.003 -0.003 -0.026 

Kautz -0.027 -0.003 -0.051 -0.043 -0.021 -0.023 -0.169 

Nisqually/Wilson -0.022 -0.098 -0.005 -0.057 -0.029 -0.037 -0.248 

North Mowich/Edmunds -0.179 -0.191 -0.151 -0.108 -0.027 -0.051 -0.706 

Puyallup/South Mowich -0.165 -0.093 -0.157 -0.127 -0.029 -0.033 -0.565 

Tahoma/South Tahoma -0.102 -0.158 -0.088 -0.046 -0.027 -0.005 -0.425 

Whitman/Ohanapecosh/ 

Fryingpan -0.197 -0.109 -0.056 -0.085 -0.004 -0.034 -0.485 

Winthrop -0.060 -0.038 -0.087 -0.038 -0.002 -0.019 -0.333 

Total -1.153 -0.904 -0.859 -0.698 -0.264 -0.356 -4.283 
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Appendix B: Additional Landsat scenes and measured glacier areas of Mt. Rainier 

 

 

Figure B1: August 23, 1985 
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Figure B2: August 31, 1988 
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Figure B3: September 25, 1991 
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Figure B4:  September 12, 1998 
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Figure B5: August 6, 2005 
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Figure B6: August 28, 2007 
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Figure B7: September 18, 2009 
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Appendix C: Zoomed in view of measured areas of Nisqually/Wilson and 

Cowlitz/Ingraham/Paradise Glaciers 

 

 

 

 

 

 

 

 

 

 



58 
 

Appendix D: Percent Change in Area of North-Facing Glaciers (Carbon/Russell, Emmons, North 

Mowich/Edmunds, Puyallup/South Mowich, Winthrop) and South-Facing Glaciers 

(Cowlitz/Ingraham/Paradise, Kautz, Nisqually/Wilson, Tahoma/South Tahoma) 

 

 1985-1988 1988-1991 1991-1998 1998-2005 2005-2007 2007-2009 1985-2009 

North-

facing -0.384% -0.344% -0.157% -0.124% -0.158% -0.201% -0.199% 

South-

facing 
-0.458% -0.342% -0.142% -0.106% -0.201% -0.243% -0.205% 
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Appendix E: (A) Comparison of average annual temperature and (B) annual precipitation 

recorded at the Paradise Ranger Station to the measured glacier area from 1985-2009 
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Appendix F: Approximate timing (cal yr BP) of Cascade eruptions during the last 10 ka 

 

Mt. Adams Mt. Baker Glacier 

Peak 

Mt. Hood Lassen 

Peak 

Mt. 

Mazama 

1,250 157 300 150 95 5000 

1,400 5,800 1,100 200 1,100 7,500 

1,500 6,600 1,800 1,700  7,700 

2,300 8,500 2,800    

5,000  3,800    

6,000  5,100    

9,000      

 

Medicine 

Lake 

Newberry 

Caldera 

Mt. 

Rainier 

Mt. St. 

Helens 

Mt. Shasta Three 

Sisters 

900 1,200 150 30 200 1,600 

1,200 3,500 2,200 200 700 1,900 

1,300 6,500 5,400 300 1,800 2,200 

1,400 7,300 5,550 499 2,200 2,300 

4,900  5,700 1,200 2,850 5,500 

  6,200 1,900 3,500  
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Measurements from Space (GLIMS) project. The modeled glacier area at Mt. 

Rainier for the last 10 ka was then compared to the eruptive history of Mt. Rainier 

and other Cascade volcanoes to examine correlations. 

 

Findings and Conclusions:  Landsat scenes show a steady decrease in glacier area at Mt. 

Rainier, consistent with USGS and GLIMS measurements. The observed area of 

Mt. Rainier glaciers decreased from 85.590 km
2
 to 81.355 km

2
 (5.32%) from 

1985-2009.
 
If glacier loss continues, the risk of hazards such as jökulhlaups 

(glacial outburst floods) and lahars could be enhanced due to the increased 

amount of glacial melt. Decreases in glacier ice at Mt. Rainier could also lead to 

an increased risk of eruptions due to decompression of the magma chamber. A 

continuation of the glacier loss seen in this study could be enough to trigger 

decompression, especially if Mt. Rainier has a shallow magma chamber. 

However, it is unclear what the time lag would be between glacier loss and an 

eruption as well as the amount and rate of glacier loss that would be needed. 

Previous studies indicate that there was an increase in eruptions ~7.4-5 ka, which 

is ~3.6-6 ka following the last glacial maximum. During the last ~2.3 years, 

eruption rates of Cascade volcanoes have increased during times when the 

modeled glacier area decreased. This strongly suggests a correlation between 

eruption rates and glacier coverage. Glaciers at Mt. Rainier should therefore 

continue to be closely monitored in the future because of a possible increased risk 

of debris avalanches, lahars, jökulhlaups, and eruptions. Satellite-based remote 

sensing such as the Landsat images used in this study can be a valuable tool for 

monitoring Mt. Rainier glaciers. Future monitoring through remote sensing would 

allow glacier areas to be consistently tracked and provide data needed to assess 

hazard risks. 

 

 


