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Abstract: We evaluated the feasibility of using aerial photo-based office methods rather than
field-collected data to validate Landsat-based change detection products in national parks in
Washington State. Landscape change was performed using LandTrendr algorithm. The resulting
change patches were labeled in the office using aerial imagery and a random sample of patches was
visited in the field by experienced analysts. Comparison of the two labels and associated confidence
shows that the magnitude or severity of the change is a strong indicator of whether field assessment
is warranted, and that confusion about patches with lower magnitude changes is not always resolved
with a field visit. Our work demonstrates that validation of Landsat-derived landscape change
patches can be done using office based tools such as aerial imagery, and that such methods provide
an adequate validation for most change types, thus reducing the need for expensive field visits.
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1. Introduction

Background

As computing power has improved and satellite imagery has become more readily available,
broad scale, moderate resolution, multi-temporal mapping, classification, and monitoring of landscape
change has become increasingly feasible [1,2]. Moreover, improved algorithms provide the ability to
discern among an ever larger group of change processes, including both anthropogenic and natural
events. With this increasing power comes a heightened requirement for validation of landscape change
detection products [3]. Field work to collect assessment or validation data is expensive and logistically
challenging, particularly for large-area projects that include private land or remote and inaccessible
terrain, including mountainous wilderness areas [4]. Strategies to address these challenges vary,
including limiting the sample size or making use of existing field validation data collected for different
projects and applications. However, small sample sizes reduce power, and external data rarely match
the temporal and spatial qualities needed to align with the remote sensing products [3].

High-resolution aerial and satellite imagery offer a possible solution. As tools such as Google
Earth™ and CollectEarth ease access to and use of historical aerial imagery, it has become possible for
broad scale projects to use independently derived, remotely sensed datasets rather than field collected
data to validate change detection and labeling results [3,5–7]. To create a validation dataset, a skilled
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analyst views the landscape using appropriately dated imagery via a desktop software package such
as Google Earth™. If these methods offer information content comparable to that collected in the field,
they could represent an attractive solution for landscape change projects, particularly when costs
drive project planning. However, to our knowledge, studies designed to explicitly compare field and
office-based validation of landscape change are lacking.

Observations of landscape change from above or from under the canopy each have strengths and
weaknesses. Office-based interpretation of aerial imagery offers the opportunity to view the changed
area within a broader landscape context that is not always easily viewed in the field. Aerial imagery
also offers the viewing perspective similar to that of the satellite imagery, and can importantly provide
the opportunity to compare conditions before and after a landscape event has occurred. However,
interpretation depends on the availability of high resolution images bracketing the change events, and
even with available images, some types of change may be too subtle or obscured to detect. This may
be particularly challenging when the target change processes are more complex or variable in effect
than on the ground. On the other hand, field visits can provide information that is difficult to see in
aerial imagery, such as subtleties in vegetation vigor or the impacts of landscape change processes
occurring under the forest canopy. However, field visits can only examine current conditions, and may
lack the historical and landscape context to understand what happened in the past.

Resolving this issue is particularly important for natural resources agencies that must manage
large land holdings with relatively modest resources. The North Coast and Cascades Inventory and
Monitoring Network (NCCN) of the National Park Service (NPS) precisely faced this issue. Tasked with
monitoring landscape change inside and outside several large national parks in the U.S.’s Washington
State, the NCCN developed a methodology to map, label, and monitor landscape change in the large
national parks of the Pacific Northwest [8]. To be cost-effective, this original monitoring protocol
utilized office-based aerial photo interpretation for validation, but questions remained about the
reliability of the method.

Here, we report on a study designed to evaluate the consequences of using aerial photo-based
office methods rather than field-collected data to validate Landsat-based change detection products.
Using a restricted random sampling approach, we identified landscape change patches across
three large wilderness parks and compared interpretations derived from field versus aerial photo
interpretation. Key questions included: Is office validation sufficient to replace field validation entirely,
or is some combination of the two types needed? Under what situations does the office change category
label differ from the field label? While focused on our own region of interest, we anticipate that our
findings may guide other natural resource managers faced with similar tradeoffs between cost and
validation robustness.

2. Materials and Methods

2.1. Description of the Study Area

The study area encompasses Mount Rainier (MORA, 46.860709◦N; 121.703529◦W), North
Cascades Complex (NOCA, 48.690548◦N; 121.140239◦W), and Olympic (OLYM, 47.803139◦N;
123.676729◦W) National Parks, located in Washington State, USA (Figure 1). Over 90% of each
park is designated wilderness, making them an ideal location to study natural disturbances, but
also very challenging places to access due to the lack of roads and a minimal trail network. The
three parks share a common mix of mountainous terrain, forested valley walls, and lower elevation
riverine watersheds.

All three parks feature tall peaks or mountain ranges at their core, creating steep precipitation
gradients due to the strong rainshadow effects. Annual precipitation on the West side of the parks
exceeds 300 cm, decreasing to 60 cm or less to the East. Snow dominates winter precipitation above
1800 m in all the parks, with 8–10 m accumulating on average each winter. Glaciers can be found in
each of the parks, forming the headwaters of regionally significant rivers including the Hoh, Skagit,
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and Nisqually. The Western lowlands in all parks are dominated by mesic Douglas-fir (Pseudotsuga
menziesii) and Western hemlock (Tsuga heterophylla) forests which grade to Pacific silver fir (Abies
amabilis) forests at middle elevations. The montane silver fir forests transition into mountain hemlock
(Tsuga mertensiana) and subalpine fir (Abies lasiocarpa) woodlands and subalpine meadows as elevation
increases. Above the upper limit of treeline, alpine meadows segue to rock and ice at the highest
elevations. In the Eastern side of the parks, dry forests and woodlands of pine (Pinus spp), Douglas-fir,
subalpine fir, and larch (Larix lyallii) predominate.
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2.2. Change Detection

To identify and label landscape change, we utilized methods based on those described in
Kennedy et al. [5]. The underlying change detection method was LandTrendr, a temporal segmentation
algorithm that attempts to characterize durable change in the spectral trajectories of individual pixels
over the entire time period of the Landsat Thematic Mapper (TM) sensors [9]. LandTrendr traces the
spectral trajectory of each pixel through the time period of the Landsat imagery and uses statistical
line-fitting algorithms to break the trajectory into a series of segments. Significant changes in pixel
reflectance were marked as inflection points in the yearly trajectory, and from those inflection points
we identified the year, magnitude, and duration of change. For this study, we used the normalized
burn ratio (NBR) as the spectral index to identify change [10] and mapped change from 1985 to 2009 at
North Cascades Complex (NOCA) and Mount Rainier (MORA) and 1985 to 2010 at Olympic (OLYM)
National Parks. Following methods described in our original protocol [8], our workflow initially
focused on pixel-level changes whose duration was four years or less and whose magnitude of change
was at least 10% of the starting index value. Then, once pixels of change were identified, we grouped
pixels of the same disturbance year together into disturbance patches, and removed any patches with
fewer than nine pixels (less than 0.8 ha). We used Random Forest classification algorithms [11] to
assign a category of change to all LandTrendr-generated patches inside the park boundaries following
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methods described in Kennedy et al. [5]. We summarized the classification results in a series of NPS
Natural Resource Data Series reports [12–14]. These patches formed the basis of our comparisons.

2.3. Categories of Landscape Change Monitored

We focused on natural disturbances that significantly removed or altered vegetation. This
included fires, landslides, avalanches, tree topples, river course alterations, or forest health declines
(Table 1, Appendix A). Additionally, we explicitly identified a type of false positive change common
in our change detection products. This type of change results when non-durable changes caused by
ephemeral phenomena trigger the LandTrendr algorithm to falsely identify a pixel as change, when in
fact it was merely subject to unusual phenology, changes in soil moisture, or imperfect masking of
shadow or cloud. Consistently found in the subalpine zone of the study area, we labeled this type
“Annual Variability.”

Table 1. List of landscape change types and description.

Landscape Change Type Definition

Annual Variability

Categorizes landscape changes caused by annual differences in cloud cover,
sun angle, phenology, and soil moisture. Annual Variability patches are
explicitly modeled so that they can be eliminated from the analysis and

results, because they do not capture change of interest to the NPS.

Avalanche Long, linear change areas which originate in snow receiving zones or valley
walls. Typically remove some but not all of the vegetation.

Fire
Often corroborated from outside sources, wildland fires vary in intensity

from full canopy removal to partial burns which leave behind a mixture of
dead and singed trees.

Mass Movement

Category includes a variety of vegetation-removing changes that expose
rock and bare ground: landslides, which are found on valley walls and
away from streams; creeps, which are slow downward movements of

slope-forming soil or rock; and debris flows that are associated with steep
gullies and involve water. Mass Movement is distinguished from the
Riparian category because it occurs on slopes greater than 15 degrees.

Progressive Defoliation

Assigned to polygons where the forest cover remains but has undergone
slow change in spectral values representing a loss of greenness and wetness.

Several patterns of decline in tree health can be seen, reflecting various
causal agents including insects, pathogens and drought-stress.

Riparian
Change areas of this type are restricted to the valley floor in areas where

either conifer or broadleaf vegetation previously existed and has been
converted to active river channel, with water or river banks.

Tree Toppling Forest areas where trees have been broken off or topped by some action
other than Avalanche, generally due to wind but sometimes due to root rot.

2.4. Change Label Validation

2.4.1. Office Validation

Following the Random Forest classification, an NPS Geographic Information Systems (GIS)
specialist reviewed all change category labels (primary label) inside the park boundaries in the office
by using the time series of United States Geological Survey (USGS) and the National Agricultural
Imagery Program (NAIP) orthomosaic imagery available in Google Earth™ (Figure 2). The individual
park reports list the images used for office validation [12–14].
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In addition to aerial photography, the analyst performing the office validation visualized the
spectral trajectory of a group of pixels surrounding the center of the patch (Figure 3) and viewed the
time series of Landsat image chips centered over the patch (Figure 4). The analyst also referenced
US Forest Service Insect and Disease Aerial Surveys [15] as an independent data source of areas with
affected vegetation.
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Figure 4. Pre- and post-disturbance tasseled-cap image chips from the stack of Landsat images used in
LandTrendr run. Colors are assigned to the red, green, and blue color hues are tasseled-cap Brightness,
Greenness, and Wetness, respectively. Dark blue streaks correspond to Landsat 7 missing scan lines,
yellows to broadleaf shrub or tree; red to open soil or rock; light blue and cyan to needle-leaf forest and
mixed needle- and broad-leaf forest.

Each patch was also assigned a subjective level of “confidence” in the choice of landscape change
label ranging from one (least confident) to three (most confident). In general, we assigned a confidence
of three when three criteria were all consistent with expectations for that change category: the visual
assessment of the patch size and shape, its spectral trajectory characteristics, and its location on the
landscape. We chose a confidence of two when one of the evaluation criteria either did not match
the expected pattern or could not be assessed (as with subtle spectral change). Additionally, we
assigned a confidence of two when a patch appeared to be mixed: pixels of different change types were
combined into the same patch because they were spatially adjacent and occurred during the same
year. A confidence of one was assigned when at least two of the evaluation criteria did not match the
expected pattern or could not be assessed due to lack of high resolution imagery. If a confidence of
two or one was chosen, the analyst recorded a second choice for the patch label (alternative label). In
the case of a mixed patch, the primary label was given to the change category that occupied more than
50% of the patch.

2.4.2. Field Validation

Random Sample

Following office labeling, a subset of the patches in each park from the years 2006–2010 was
randomly chosen for field validation using the Alaska Pak tool in ArcGIS [17]. Most patches were
located within a 500 m buffer of accessible trails and roads and within 5 km of a trailhead. Our previous
work has demonstrated that this restricted area of inference is representative of the larger study area.
Some change types such as Mass Movements, occurred infrequently during our analysis period. For
these rare change types, we expanded the sample further than 500 meters from trails and roads in
order to have a minimum of five patches. Fire patches were not included in the field validation of
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randomly selected patches because we could use existing NPS data to identify them reliably [18].
While the map dataset went back to 1985, we only selected patches from the most recent years for two
reasons: (1) vegetation recovery since the time of disturbance can make it difficult to assess the original
change agent, and (2) our long-term monitoring protocol repeats periodically, allowing us to evaluate
landscape changes every 3–5 years. In 2011–2016 NPS ecologists and/or GIS specialists visited 132
randomly selected patches in the field in all three parks (Figure 5), including 25 patches in MORA, 54
in NOCA, and 53 in OLYM. Field crews were only provided information about the location and the
year of the disturbance. A Garmin GPS unit was used to navigate to a Landsat pixel near the center
of the patch. In cases where distance or barriers such as streams or steep slopes prevented a field
visit, but the patch could be accurately located on the landscape from a nearby vantage point, the field
team collected data from a distance. Twenty-eight (21.3 %) of patches were assessed from a distance.
Photos were taken of each patch. Confidence in the type was recorded using the same scale as the
office validation. Patches with a single, clear change category were assigned a confidence of three.
Mixed patches, where evidence of more than one change type was present, and patches where the
field team was not sure if the observed change on the ground would have been picked up by satellite
overhead because of canopy cover, were assigned a confidence of two. Patches with more than two
change types present were assigned a confidence of one. An alternative label was recorded for patches
with lower confidence levels. In the case of a mixed patch, the primary label was given to change
category that occupied more than 50% of the patch.

Incidental Field Observations

As field sampling is expensive and time consuming, during field-work, we opportunistically
extended our dataset by sampling any change patch from 2006–2010 that was accessible on the
route to the target random sample. Through this process, we added another 134 patches that we
named “incidental samples” (Figure 5). While the incidental samples do not meet requirements for
design-based sampling, their selection depended entirely on the random arrangement of change
patches along access routes and was not affected by human preference. Given the cost in reaching the
randomly-selected plots, the addition of these plots provided an opportunity to double our dataset
size. In our later analysis, we treat these samples both separately and combined, and allow the reader
to judge the degree to which they add useful information.

See Appendix A for examples of field photos and corresponding office validation materials for
each landscape change type.
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Figure 5. Selected landscape change patches visited at (a) Mount Rainier National Park, WA, (b) North
Cascades National Park Service Complex, WA, and (c) Olympic National Park, WA. Target patches
were chosen at random from patches that were up to 500 m from roads or trails. Incidental samples
were encountered while accessing the random samples.

2.5. Data Analysis

We used a series of agreement matrices to assess how frequently the office label differed from the
field label for each of the change categories and sample types. We first compared the office and field
labels for the random sample using only primary labels from both field and office, i.e. the alternative
label was not considered. We then repeated the process for a dataset that included both random and
incidental observations to determine if the general patterns noted for the random plots held. A second
matrix was generated for randomly-selected plots that considered both primary and alternative labels
to determine a label match. In this case, if one of the primary or alternative office labels matched one of
the primary or alternative field labels, the combination was considered a match. While the agreement
matrix uses the same format as a contingency matrix, one significant difference in this application is
that one view is not considered “truth” and the other the “observation”; therefore, we do not apply
labels like “user’s accuracy” and “producer’s accuracy.”

Finally, we examined agreement matrices with respect to confidence values of office and field
labels to determine how confidence was distributed between the two validation types and among
change categories.

3. Results and Discussion

3.1. Random sample

Office- and field-assigned change category labels for randomly selected patches had an overall
agreement of 88.5% (Table 2). Most change categories had a high degree of agreement (> 85%) between
office and field labels. The Riparian category had the highest agreement, likely because this category
has the most spatially and spectrally discrete signal and a clear landscape context. The Annual
Variability, Avalanche, and Mass Movement categories all had levels of agreement above 85%, with
Annual Variability showing agreement above 90%. Avalanche and Mass Movement patches were easily
recognizable in the field and in the office based on landscape position and the quality of vegetation
disturbance associated with them (see Table 1). Annual Variability was unique among the change
categories because it denoted a lack of lasting change on the ground. It was most often identified in
the field by eliminating all other categories.
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Table 2. Agreement matrix comparing primary labels assigned in office and field for the random
sample only.
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Annual Variability 15 1 16 93.8
Avalanche 1 15 1 17 88.2

Fire 1 1 0.0
Mass Movement 1 14 1 16 87.5

Progressive Defoliation 34 34 100.0
Riparian 19 19 100.0

Tree Toppling 1 1 7 19 28 67.9
Grand Total 16 17 0 15 44 20 19 131

93.8 88.2 0.0 93.3 77.3 95.0 100.0
Overall Agreement 88.5

Tree Toppling and Progressive Defoliation labels had the lowest agreement and were often
confused with each other. Five out of seven patches with a primary field label of Tree Toppling and
primary office label of Progressive Defoliation had a secondary field label of Progressive Defoliation.
Only one office patch out of seven had Tree Toppling as a second option, but Annual Variability was
listed four times. This suggests that the office analyst had difficulty interpreting mild Tree Toppling on
aerial photography, but did see subtle change in the spectral signal of the pixel trajectory that signified
some type of change in forest canopy.

Detailed evaluation of individual cases of disagreement between the office and field labels for the
random sample of patches showed three general patterns.

1. Timing of field visit

We found several instances where the field visit occurred after a later disturbance event had
superseded the disturbance event of interest, resulting in the field crew evaluating the wrong event.
This was the case for one disagreement in the Riparian category, with Fire occurring after the change
was detected by the mapping algorithm, but before the field sampling occurred. The sequence of
disturbance could easily be discerned when looking at the time series of aerial photos, but was not
evident in the field. A similar scenario took place where an Avalanche path was later covered by debris
from a Mass Movement, confusing identification in the field.

2. Labeling of process as opposed to result

This category of disagreement includes patches where there may have been some confusion
between identifying the cause and effect of landscape change being labeled. From the office view,
the analyst usually only sees the effect of change: reduced canopy vigor (Progressive Defoliation),
for example, or fallen trees (Tree Topple). During field sampling, however, one might be able to
more readily identify the cause of change by looking at what happened under the canopy: reduced
canopy vigor having been caused by a small debris flow that covered the base of trees with mud (Mass
Movement); or Tree Toppling having been caused by water inundation, killing and toppling the trees
(Riparian). The field calls in these cases recorded the cause of change and not the effect as it was visible
to the satellite and the analyst in the office. Patches labeled as Progressive Defoliation in the office
were most frequently found to have some other disturbance under the canopy. Both cause and effect
were often labeled in the field using confidence of two and an alternate agent.
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3. Mixed change

This category of disagreement includes patches that had two or more categories of change evident
during the field and/or office labeling. Occurrence of several landscape altering events within one
year is not distinguishable when using the LandTrendr algorithms, as these utilize a single image
per year for change detection, and patches are delineated by combining adjacent pixels labeled with
the same year. Therefore, if two separate weather events in the same year caused different categories
of change to be adjacent to each other, the resulting patch would contain the effects of both events.
Similarly, a single weather event could cause two or more categories of change to occur next to each
other if the landscape context was different. This was seen frequently at OLYM and MORA along
river corridors after a 2007 winter windstorm event, when riparian flooding and debris flows were
seen alongside windthrow patches that caused tree toppling. In both field and office evaluation, such
mixed patches were usually labeled with the confidence of two and an alternate category was recorded.
When evaluating such labels for agreement, we often found that even though the same categories
of change were present in both types of labeling, their order of priority was switched. This was in
part caused by different perspectives of field vs. office analysis, where one category appeared to be
more prominent under the canopy vs. above, but we also found it difficult to assess the extent of
each category of change on the ground when the entire patch was not visible. Indeed, when given the
opportunity, we found it easier to label patches in the field when surveying them from afar, especially
for certain categories, particularly Progressive Defoliation and Annual Variability.

To determine how the degree of agreement would change if alternative labels were taken into
account, we generated a second matrix where labels were considered to be in agreement if either the
primary or alternative office label matched either the primary or alternative field label (Table 3). While
the disagreement resulting from the timing of the field visit was not improved by this approach, we
saw a few of the patches in the other two categories switch to being considered as having a matching
label, with the overall agreement increasing to 96.9%. This indicated that the same two categories of
change were consistently chosen in office and field, but a different order was used.

Table 3. Agreement matrix comparing primary and secondary labels assigned in office and field for
the random sample only.

Office Label

Row Labels
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Annual Variability 16 16 100.0
Avalanche 15 15 100.0

Fire 0 0.0
Mass Movement 1 15 16 93.8

Progressive Defoliation 42 42 100.0
Riparian 20 20 100.0

Tree Toppling 1 2 19 22 86.4
Grand Total 16 17 0 15 44 20 19 131

100.0 88.2 0.00 100.0 95.5 100.0 100.0
Overall Agreement 96.9

3.2. Random and Incidental Sample

We repeated our evaluation using both random and incidental samples and only the primary
labels for each patch, and found that the patterns remained largely consistent in this larger dataset
(Table 4). Avalanche, Annual Variability, and Mass Movement categories showed agreements similar
to that of the random sample. Fire also had a high degree of agreement, with labeling being more
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confused in the office in cases of lower intensity fires. The accuracy of Progressive Defoliation and Tree
Toppling categories improved, with the majority of newly added incidental patches having agreement
between office and field labels in these two categories. The Riparian category remained clearly labeled
in the field, but slightly less clear in office, with a few patches labeled Avalanche and Tree Toppling.

Table 4. Agreement matrix comparing primary labels assigned in office and field for both random and
incidental samples.

Office Label

Row Labels
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Annual Variability 23 1 24 95.8
Avalanche 1 22 1 1 1 26 84.6

Fire 13 1 1 15 86.7
Mass Movement 1 14 1 16 87.5

Progressive Defoliation 1 81 1 83 97.6
Riparian 47 47 100.0

Tree Toppling 1 1 6 2 42 52 80.8
Grand Total 24 25 13 16 91 51 43 263

95.8 88.0 100.0 87.5 89.0 92.2 97.7
Overall Agreement 92.02

3.3. Evaluation of Confidence Rankings

For the random sample using primary labels only, we evaluated the distribution of the confidence
in the labeling (Table 5a,b). For more than 50% of the patches, the field and office analysts shared high
confidence. Rarely was the separation of confidence extreme: Only in 4.6% of the patches did the office
analyst have lowest confidence and the field analyst highest confidence, and only 1% of the time was
the reverse the case. However, there were several areas where confidence scores were close, but not
matching: in 12% of the cases, field confidence was lower than in the office, and in 16% of the cases,
the reverse was true.

Table 5. Agreement matrix comparing agreement between office and field confidence levels for
primary labels assigned in office and field for the random sample only: (a) raw numbers and (b)
percent of sample.

Office Confidence

1 2 3 Grand Total

Field
Confidence

1 0 0 1 1
2 4 16 21 41
3 2 16 72 90

Grand Total 6 32 94 131

(a)

% Sample Office Confidence

1 2 3 Grand Total

% Sample Field
Confidence

1 0 0 0.76 0.76
2 3.1 12.2 16.0 31.3
3 1.5 12.2 55.0 68.7

Grand Total 4.6 24.4 71.8 100.0

(b)
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Dissecting these areas of disagreement in confidence paints a more nuanced picture of the relative
strengths of the field and the office-based assessments (Table 6 and Figure 6). Progressive Defoliation,
Avalanche, and Annual Variability categories had higher percentage of high confidence labels in
the office, where Tree Toppling and Mass Movement patches were labeled with more confidence in
the field (Table 6). Field analysts had difficulty labeling Annual Variability in the field, with several
patches having a confidence of one, largely because the category can only be labeled by eliminating all
other categories first, often leaving uncertainty in the choice selection and possibility of other choices
(Figure 6). In contrast, the office analyst can utilize landscape position and highly variable spectral
trajectory to assign the label of Annual Variability.

Table 6. Comparison of high and medium confidence levels by change category.

Category % Patches: 2 Office/3 Field % Patches: 3 Office/2 Field

Annual Variability 4 13
Avalanche 8 27

Fire 33 7
Mass Movement 31 19

Progressive Defoliation 5 18
Riparian 1 0

Tree Toppling 25 10
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Figure 6. Distribution of confidence values among change categories for labels assigned in the field for
randomly selected patches.

Progressive Defoliation had relatively lower percentage of high confidence labels in both office
and field, with a number of plots having the lowest confidence level in the office (Figure 7). Progressive
Defoliation is difficult to assess from the office because of the quality and resolution of the one meter
NAIP imagery typically used. Orthorectification errors, color balancing, and variable acquisition times
all degrade the image quality and make it difficult to visualize the subtle changes in canopy condition
detected by LandTrendr for this change type. While assigning labels in the office, altered canopy
condition, such as clusters of red needles, are difficult to see in the NAIP. This might encourage the
analyst to look for evidence—even subtle or on a fine scale—of any other change spotted in the image,
such as broken trees. As with Annual Variability, consulting the spectral trajectory is often helpful,
although less so if the change is subtle. In the field, Progressive Defoliation is often hard to see in
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dense forest where the condition of the canopy is difficult to assess from below and there is no strong
evidence of insect or disease.
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Figure 7. Distribution of confidence values among change categories for labels assigned in the office
for randomly selected patches.

Mass Movements were harder to identify in the office (lower confidence scores), possibly because
smaller Mass Movements under canopies were not visible or because the change resulted in secondary
change that was visible. Evidence of Mass Movements, such as scattered rock and debris, is easier to
see in the field.

While Tree Toppling had a similar distribution of confidence levels in the office and in the field,
the reasons for assigning a confidence of two were quite different. In the office, a minor Tree Toppling,
with only a few trees down, was hard to identify on aerial photos, and Progressive Defoliation was
often assigned as an alternative label. In the field, the Tree Toppling was often seen together with
another change category and the confidence of two was assigned because the patch was “mixed.”

4. Conclusions and Recommendations

As computational and algorithmic advances improve our ability to map natural change processes
over broad landscapes, the assessment datasets used to evaluate the maps must similarly improve. The
cost of conducting field visits to build reference or validation datasets can limit sample size, making
methods that are based on aerial photo interpretation conducted in an office setting attractive. This is
particularly the case in the large wilderness parks of Washington state, U.S.A., where access for field
visitation is time consuming and costly, but where inventories of natural disturbance processes are
important to understand landscape dynamics inside and outside protected areas. In order to optimize
our validation effort, we compared the relative strengths of field versus office-based validation of
landscape change in Mount Rainier, North Cascades Complex, and Olympic National Parks.

In general, we found that the office and field labels strongly agreed. For five of the seven landscape
change types we evaluated (Annual Variability, Avalanche, Fire, Mass Movement, and Riparian), the
office and field labels had high degree of agreement. For two remaining categories (Progressive
Defoliation and Tree Toppling), office-based evaluation of aerial photos was slightly less effective at
identifying change, in larger part due to inadequate image resolution. These findings generally held
true both for the sample dataset that included only random samples as well as the expanded dataset
that included opportunistically acquired samples. Thus, even though we limited our random samples
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to areas within realistic access from trails and roads, we argue that the underlying change processes
represented in our sample form a reasonable representation of the conditions operating more broadly
in these parks.

As we explicitly recognized that all interpretation is subject to some uncertainty, we included
methods to capture ambiguity and could use those observations to gain a more nuanced understanding
of the conditions under which agreement was weaker. Confidence scoring showed that office
interpreters had difficulty confidently identifying Tree Toppling and Progressive Defoliation, while
field interpreters had difficulty confidently identifying Annual Variability. This is encouraging as these
were indeed the categories where those respective interpreters had greater disagreement, suggesting
that actual error is related to uncertainty. This is corroborated by the observations of primary and
secondary labels: by aggregating primary and secondary labels, the disagreement among these
types diminished.

Case by case evaluation of individual plots of disagreement provided further insight into the
causes of disagreement. Some errors were introduced in the field sample due to the delay in the time
since disturbance and the field visit, emphasizing the importance of doing the field work soon after
the disturbance occurred. Some errors were introduced because of the inevitable mismatch between
the ground perspective and the office (aerial photograph) perspective. In general, field observations
allowed greater understanding of the complexities of the change processes, as could be expected.
Indeed, some disagreement occurred when field observers were able to observe the process itself,
rather than simply the manifestation of that process visible at the top of the canopy from an aerial
photo. However, field observations underneath a canopy may not be able to understand what is
occurring at the top of the canopy that could be detectable by the satellite imagery.

Indeed, this raises an important issue to consider whenever designing a validation study. For
certain change processes, field visits will be more able to understand the processes involved. However,
the downward-looking view afforded by high resolution imagery provides the same perspective as that
of the satellite imagery on which the landscape maps are made, and indeed might be more appropriate
as a means of corroborating the detection noted by the sensors. When a subtle mass movement under
a canopy causes trees to topple, it may be just as appropriate to document the impact as the potential
underlying cause. Moreover, it appears that even the cases of disagreement are relatively minor.

In general, we conclude that the magnitude or severity of change is a better indicator of whether
or not a field assessment is warranted. More damaging and abrupt categories of change, especially
those that remove canopy cover, are more suitable for labeling in the office. More subtle changes
and changes in forests that do not remove canopy, such as Progressive Defoliation or a minor Tree
Topple, could potentially be checked in the field. However, our results suggest that a field visit may
not entirely resolve uncertainty about these subtle types of change.

Our work demonstrates that validation of Landsat-derived landscape change patches can be done
using office based tools such as aerial imagery, and that such methods provide an adequate validation
for most change-types, thus reducing the need for expensive field visits.
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Appendix A. Field and Office Validation Examples of Seven Landscape Change Types Assessed
in this Study

1. Annual Variability
Annual Variability category was created to be able to model and remove polygons detected by

LandTrendr that do not capture change of interest to the NCCN. Usually, these changes are associated
with variability in snow cover, clouds, terrain shadows, or vegetation phenology that is not removed
in the image processing steps and is of great enough magnitude to pass through filtering. Annual
variability patches are generally only found in high elevations areas with subalpine vegetation, such
as above the tree line. The interpreter must exercise care in determining a polygon of this class truly
shows no change. The TimeSync trajectories of these changes usually show high degree of variability
throughout the time period being examined and are dominated by red, brown and orange hues.
Figure A1 shows an example of a 2008 patch in Mount Rainier National Park that would be placed
in the Annual Variability category. Landsat tasseled-cap image chips between 2006 and 2009 are not
significantly different, except for slight variation in hues most likely related to differences in timing of
snowmelt and soil moisture during the image acquisition dates.
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Figure A1. A 2008 Annual Variability patch generated by LandTrendr at Mount Rainier National 
Park. (a) Photo collected during field validation. Photo credit: NPS/Catharine Copass (2016). (b) 
Pre-disturbance 2006 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2009 aerial 
photo as viewed in Google Earth™. (d) TimeSync spectral trajectory of nine pixels around patch 
centroid. (e) Part of the series of tasseled-cap image chips covering pre- and post-disturbance years 
as viewed in TimeSync. Dark blue streaks in (e) correspond to Landsat 7 missing scan lines, magenta 
colors correspond to snow and bright red colors denote clouds. 

2. Avalanche 
Avalanches originate in snow receiving zones on ridges or high on the valley wall. They are 

typically long, linear patches, although some events can be broken up into multiple smaller patches 
depicting areas of greatest removal of vegetation. If the avalanche occurred in an existing avalanche 
chute, the TimeSync trajectory usually starts in bright greens and yellows, which are representative 
of low statured, mostly broadleaf vegetation – small conifers, deciduous shrubs and herbs. If swaths 
of forest were removed, the TimeSync trajectory will start as greenish blue, representative of mature 
conifer forest. As avalanches typically remove some but not all of the vegetation, the trajectory after 
the event is typically shown in hues of red, brown and tan. Higher magnitude avalanches 
occasionally traverse the valley floor and leave a large pile of downed trees in their wake, which can 
usually be seen in the aerial photography. Figure A2 shows field and office validation components 
for a large avalanche that occurred at North Cascades National Park in 2008. 

Figure A1. A 2008 Annual Variability patch generated by LandTrendr at Mount Rainier National
Park. (a) Photo collected during field validation. Photo credit: NPS/Catharine Copass (2016).
(b) Pre-disturbance 2006 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2009 aerial
photo as viewed in Google Earth™. (d) TimeSync spectral trajectory of nine pixels around patch
centroid. (e) Part of the series of tasseled-cap image chips covering pre- and post-disturbance years
as viewed in TimeSync. Dark blue streaks in (e) correspond to Landsat 7 missing scan lines, magenta
colors correspond to snow and bright red colors denote clouds.

2. Avalanche
Avalanches originate in snow receiving zones on ridges or high on the valley wall. They are

typically long, linear patches, although some events can be broken up into multiple smaller patches
depicting areas of greatest removal of vegetation. If the avalanche occurred in an existing avalanche
chute, the TimeSync trajectory usually starts in bright greens and yellows, which are representative
of low statured, mostly broadleaf vegetation—small conifers, deciduous shrubs and herbs. If swaths
of forest were removed, the TimeSync trajectory will start as greenish blue, representative of mature
conifer forest. As avalanches typically remove some but not all of the vegetation, the trajectory after
the event is typically shown in hues of red, brown and tan. Higher magnitude avalanches occasionally
traverse the valley floor and leave a large pile of downed trees in their wake, which can usually be
seen in the aerial photography. Figure A2 shows field and office validation components for a large
avalanche that occurred at North Cascades National Park in 2008.
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Figure A2. A 2008 Avalanche patch generated by LandTrendr at North Cascades National Park. (a) 
Photo collected during field validation. Photo credit: NPS/ Chris Lauver (2011). (b) Pre-disturbance 
2006 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2009 aerial photo as viewed in 
Google Earth™. (d) TimeSync spectral trajectory of nine pixels around patch centroid. (e) Part of the 
series of tasseled-cap image chips covering pre- and post-disturbance years as viewed in TimeSync. 
Dark blue streaks in (e) correspond to Landsat 7 missing scan lines and bright red (as opposed to 
darker red) color in the last image chip denotes clouds. 

3. Fire 
Figure A3 shows a 2004 fire at Mount Rainier National Park. Fires tend to leave standing trees 

with no foliage, which can be seen in the aerial photography as thin shadows. Fire polygons are 
often large. Some lower intensity fires leave behind a mix of dead and singed trees. Sometimes active 
burning and smoke can been seen in the aerial photography, since the aerial photos in the Pacific 
Northwest are usually taken in August. The trajectory in the TimeSync usually shows changing from 
blue and green of conifers to a mix of brighter colors where the vegetation has been completely 
burned, to orange for shrubby new growth (Figure A3(c)). 

Figure A2. A 2008 Avalanche patch generated by LandTrendr at North Cascades National Park.
(a) Photo collected during field validation. Photo credit: NPS/ Chris Lauver (2011). (b) Pre-disturbance
2006 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2009 aerial photo as viewed in
Google Earth™. (d) TimeSync spectral trajectory of nine pixels around patch centroid. (e) Part of the
series of tasseled-cap image chips covering pre- and post-disturbance years as viewed in TimeSync.
Dark blue streaks in (e) correspond to Landsat 7 missing scan lines and bright red (as opposed to
darker red) color in the last image chip denotes clouds.

3. Fire
Figure A3 shows a 2004 fire at Mount Rainier National Park. Fires tend to leave standing trees

with no foliage, which can be seen in the aerial photography as thin shadows. Fire polygons are
often large. Some lower intensity fires leave behind a mix of dead and singed trees. Sometimes active
burning and smoke can been seen in the aerial photography, since the aerial photos in the Pacific
Northwest are usually taken in August. The trajectory in the TimeSync usually shows changing from
blue and green of conifers to a mix of brighter colors where the vegetation has been completely burned,
to orange for shrubby new growth (Figure A3c).
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Figure A3. A 2004 Fire patch generated by LandTrendr at Mount Rainier National Park. (a) Photo 
collected during field validation. Photo credit: NPS/ Natalya Antonova (2016). (b) Pre-disturbance 
2003 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2006 aerial photo as viewed in 
Google Earth™. (d) TimeSync spectral trajectory of thirty six pixels around patch centroid. (e) Part of 
the series of tasseled-cap image chips covering pre- and post-disturbance years as viewed in 
TimeSync. Dark blue streaks in (e) correspond to Landsat 7 missing scan lines. 
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valley floor. Riparian category is associated with changes found on the valley floor, along low 
gradient rivers. Mass movements are distinguished from avalanches by the magnitude of change: 
mass movement leaves little to no vegetation; and by shape and context. The interpreters usually 
look for persistent red and orange colors in the TimeSync trajectory following the event (Figure 4(c)). 

Figure A3. A 2004 Fire patch generated by LandTrendr at Mount Rainier National Park. (a) Photo
collected during field validation. Photo credit: NPS/ Natalya Antonova (2016). (b) Pre-disturbance
2003 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2006 aerial photo as viewed in
Google Earth™. (d) TimeSync spectral trajectory of thirty six pixels around patch centroid. (e) Part of
the series of tasseled-cap image chips covering pre- and post-disturbance years as viewed in TimeSync.
Dark blue streaks in (e) correspond to Landsat 7 missing scan lines.

4. Mass Movement
This category includes a variety of vegetation-removing changes that expose rock or bare ground.

Larger events are typically called landslides, and are found on valley walls away from streams or
creeks. Most landslides totally remove vegetation and are often persistent, such as the 2004 Goodell
Creek landslide shown in Figure A4. Some rare events, however, are better described as “soil creeps”
or “slumps” and are characterized by only partial removal of vegetation. Debris flows are mass
movements associated with water discharge, such as streams. Mass movements are distinguished from
the riparian category in that they occur on valley walls, perpendicular to the valley floor. Riparian
category is associated with changes found on the valley floor, along low gradient rivers. Mass
movements are distinguished from avalanches by the magnitude of change: mass movement leaves
little to no vegetation; and by shape and context. The interpreters usually look for persistent red and
orange colors in the TimeSync trajectory following the event (Figure A4c).
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Figure A4. A 2004 Mass Movement patch generated by LandTrendr at North Cascades National Park. (a) 
Photo collected during field validation. Photo credit: NPS/ Jon Riedel (2004). (b) Pre-disturbance 1998 
aerial photo as viewed in Google Earth™. (c) Post-disturbance 2006 aerial photo as viewed in Google 
Earth™. (d) TimeSync spectral trajectory of nine pixels around patch centroid. (e) Part of the series of 
tasseled-cap image chips covering pre- and post-disturbance years as viewed in TimeSync. 

5. Progressive Defoliation 
Figure 5 shows components of field and office validation for 2003 North Cascades National 

Park patch that falls into the Progressive Defoliation category. This category is usually assigned to 
landscape change polygons where forest cover still remains but has undergone slow changes in 
spectral values that represent a loss of greenness and wetness (Figure 5(c)). Interpreting the color 
change in TimeSync is therefore more challenging. The interpreter usually sees a very slight dip in 
the trajectory with decrease in blueness and greenness. However, the decrease is not big enough to 
suggest change from conifer to broadleaf vegetation or bare earth (Figure A5). 

The decreasing greenness of the forest can be difficult to discern in the aerial photography. In 
some stands the decline is due to LandTrendr detecting individual trees which have completely 
died. These dead trees appear in the aerial photos as bright red or yellow. In some stands the decline 
is due to the tip and top limbs of a significant proportion of the trees succumbing to some pathogen. 
This type of decline shows up as a subtle greying of the canopy in the aerial photos and can be hard 
to discern if the color balance of the photos is poor. In addition, change polygons in this category can 
have both types of declining trees. 

Figure A4. A 2004 Mass Movement patch generated by LandTrendr at North Cascades National Park.
(a) Photo collected during field validation. Photo credit: NPS/ Jon Riedel (2004). (b) Pre-disturbance
1998 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2006 aerial photo as viewed in
Google Earth™. (d) TimeSync spectral trajectory of nine pixels around patch centroid. (e) Part of the
series of tasseled-cap image chips covering pre- and post-disturbance years as viewed in TimeSync.

5. Progressive Defoliation
Figure A5 shows components of field and office validation for 2003 North Cascades National Park

patch that falls into the Progressive Defoliation category. This category is usually assigned to landscape
change polygons where forest cover still remains but has undergone slow changes in spectral values
that represent a loss of greenness and wetness (Figure A5c). Interpreting the color change in TimeSync
is therefore more challenging. The interpreter usually sees a very slight dip in the trajectory with
decrease in blueness and greenness. However, the decrease is not big enough to suggest change from
conifer to broadleaf vegetation or bare earth (Figure A5).

The decreasing greenness of the forest can be difficult to discern in the aerial photography. In
some stands the decline is due to LandTrendr detecting individual trees which have completely died.
These dead trees appear in the aerial photos as bright red or yellow. In some stands the decline is due
to the tip and top limbs of a significant proportion of the trees succumbing to some pathogen. This
type of decline shows up as a subtle greying of the canopy in the aerial photos and can be hard to
discern if the color balance of the photos is poor. In addition, change polygons in this category can
have both types of declining trees.
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Figure A5. A 2003 Progressive Defoliation patch generated by LandTrendr at North Cascades National 
Park. (a) Photo collected during field validation. Photo credit: NPS/ Chris Lauver (2011). (b) 
Pre-disturbance 1998 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2013 aerial photo as 
viewed in Google Earth™. (d) TimeSync spectral trajectory of thirty six pixels around patch centroid. (e) 
Part of the series of tasseled-cap image chips covering pre- and post-disturbance years as viewed in 
TimeSync. Bright red color in (e) the last image chip corresponds to clouds. 

6. Riparian 
Riparian patches are restricted to the valley floor where the gradient is much lower and the 

valley floor is wider. Typical riparian patches show areas where either conifer or broadleaf 
vegetation previously existed and have been converted to either active river channel, with water, or 
river bank, with gravel and sediment. Figure A6 shows a 2006 Riparian landscape patch from Mount 
Rainier National Park with evident tree mortality and gravel and sediment depositions. The spectral 
trajectories of these changes show either sudden increase in wetness or brightness, depending on the 
resulting cover type. These changes are usually easily identified on aerial photos and Landsat image 
chips (Figure A6(b), (c), (d)). 

Figure A5. A 2003 Progressive Defoliation patch generated by LandTrendr at North Cascades
National Park. (a) Photo collected during field validation. Photo credit: NPS/ Chris Lauver (2011).
(b) Pre-disturbance 1998 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2013 aerial
photo as viewed in Google Earth™. (d) TimeSync spectral trajectory of thirty six pixels around patch
centroid. (e) Part of the series of tasseled-cap image chips covering pre- and post-disturbance years as
viewed in TimeSync. Bright red color in (e) the last image chip corresponds to clouds.

6. Riparian
Riparian patches are restricted to the valley floor where the gradient is much lower and the

valley floor is wider. Typical riparian patches show areas where either conifer or broadleaf vegetation
previously existed and have been converted to either active river channel, with water, or river bank,
with gravel and sediment. Figure A6 shows a 2006 Riparian landscape patch from Mount Rainier
National Park with evident tree mortality and gravel and sediment depositions. The spectral trajectories
of these changes show either sudden increase in wetness or brightness, depending on the resulting
cover type. These changes are usually easily identified on aerial photos and Landsat image chips
(Figure A6b–d).
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Figure A6. A 2007 Riparian patch generated by LandTrendr at Mount Rainier National Park. (a) 
Photo collected during field validation. Photo credit: NPS/ Natalya Antonova (2016). (b) 
Pre-disturbance 2006 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2009 aerial 
photo as viewed in Google Earth™. (d) TimeSync spectral trajectory of nine pixels around patch 
centroid. (e) Part of the series of tasseled-cap image chips covering pre- and post-disturbance years 
as viewed in TimeSync. Dark blue streaks in (e) correspond to Landsat 7 missing scan lines. 

7. Tree Toppling 
The Tree Toppling category primarily includes forest areas where the trees have been both 

broken off and toppled to the ground in major wind events. This category is rare at NOCA and 
MORA. It is more common at OLYM, especially in the Quinault, Hoh, and Queets River valleys on 
the west side of the park and also in the northeast corner of the park. Figure A7 shows a large 2008 
Tree Toppling patch that resulted from the December 2007 Great Coastal Gale [19]. This category 
also includes areas where the Tree Toppling is due to root rot - the structural outcome is similar and 
the agent is typically hard to determine just from the imagery. Large Tree Toppling events can build 
on themselves, with subsequent events occurring in the vicinity of the original patch. TimeSync 
trajectory of these events often shows some green vegetation remaining after the toppling, either 
because some of the trees are still standing or the foliage of the downed trees is not completely dead 
(Figure A7(d)). Down tree trunks are often visible on the aerial photograph. Windthrow events 
usually occur in areas on the landscape that are exposed to wind, either on top of ridges and knolls 
or along rivers. 

Figure A6. A 2007 Riparian patch generated by LandTrendr at Mount Rainier National Park. (a) Photo
collected during field validation. Photo credit: NPS/ Natalya Antonova (2016). (b) Pre-disturbance
2006 aerial photo as viewed in Google Earth™. (c) Post-disturbance 2009 aerial photo as viewed in
Google Earth™. (d) TimeSync spectral trajectory of nine pixels around patch centroid. (e) Part of the
series of tasseled-cap image chips covering pre- and post-disturbance years as viewed in TimeSync.
Dark blue streaks in (e) correspond to Landsat 7 missing scan lines.

7. Tree Toppling
The Tree Toppling category primarily includes forest areas where the trees have been both broken

off and toppled to the ground in major wind events. This category is rare at NOCA and MORA. It is
more common at OLYM, especially in the Quinault, Hoh, and Queets River valleys on the west side
of the park and also in the northeast corner of the park. Figure A7 shows a large 2008 Tree Toppling
patch that resulted from the December 2007 Great Coastal Gale [19]. This category also includes areas
where the Tree Toppling is due to root rot - the structural outcome is similar and the agent is typically
hard to determine just from the imagery. Large Tree Toppling events can build on themselves, with
subsequent events occurring in the vicinity of the original patch. TimeSync trajectory of these events
often shows some green vegetation remaining after the toppling, either because some of the trees are
still standing or the foliage of the downed trees is not completely dead (Figure A7d). Down tree trunks
are often visible on the aerial photograph. Windthrow events usually occur in areas on the landscape
that are exposed to wind, either on top of ridges and knolls or along rivers.
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Figure A7. A 2008 Tree Toppling patch generated by LandTrendr at Olympic National Park. (a) 
Photo collected during field validation. Photo credit: NPS (2008). (b) Pre-disturbance 2006 aerial 
photo as viewed in Google Earth™. (c) Post-disturbance 2009 aerial photo as viewed in Google 
Earth™. (d) TimeSync spectral trajectory of nine pixels around patch centroid. (e) Part of the series of 
tasseled-cap image chips covering pre- and post-disturbance years as viewed in TimeSync. Dark blue 
streaks in (e) correspond to Landsat 7 missing scan lines and bright red color corresponds to clouds. 
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