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ABSTRACT. The widespread retreat of mountain glaciers is a striking emblem of recent climate change.
Yet mass-balance observations indicate that many glaciers are out of equilibrium with current climate,
meaning that observed retreats do not show the full response to warming. This is a fundamental conse-
quence of glacier dynamics: mountain glaciers typically have multidecadal response timescales, and so
their response lags centennial-scale climate trends. A substantial difference between transient and equi-
librium glacier length persists throughout the warming period; we refer to this length difference as ‘dis-
equilibrium’. Forcing idealized glacier geometries with gradual warming shows that the glacier response
timescale fundamentally governs the evolution of disequilibrium. Comparing a hierarchy of different
glacier models suggests that accurate estimates of ice thickness and climatology, which control the time-
scale, are more important than higher order ice dynamics for capturing disequilibrium. Current glacier
disequilibrium has previously been estimated for a selection of individual glaciers; our idealized model-
ing shows that sustained disequilibrium is a fundamental response of glacier dynamics, and is robust
across a range of glacier geometries. This implies that many mountain glaciers are committed to add-
itional, kilometer-scale retreats, even without further warming. Disequilibrium must also be addressed
when calibrating glacier models used for climate reconstructions and projections of retreat in response
to future warming.
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1. INTRODUCTION
Many natural phenomena, including thermodynamic, geo-
physical, and biological systems, can be described as reser-
voirs with inputs (e.g., mass, energy, information) that
produce a related output. The behavior of these systems
depends fundamentally on the extent to which they integrate
their inputs. This is often characterized by a response time, or
‘memory’, that is related to the capacity of the reservoir and
the characteristic input and output rates. This timescale deter-
mines how quickly the system can respond to a perturbation.

When a gradual forcing is applied, an ‘equilibrium
response’ can be defined as the state at which the system
would be in equilibrium with the forcing at any given
instant. This state evolves with the forcing. However,
because the system has a memory of its previous states, the
actual system state lags the equilibrium response by an
amount that depends on its response time. This basic
concept has major implications in the context of a changing
climate system, which has subcomponents that respond on a
wide range of timescales. One of the most striking examples
is the rate of surface warming in response to anthropogenic
CO2 emissions. Transient warming lags the equilibrium
response due to the vast thermal inertia of the ocean (e.g.,
Wigley and Schlesinger, 1985). In turn, warming surface tem-
peratures constitute a gradual forcing for other systems with
long response times: lagged responses have also been inves-
tigated for sea-level rise (e.g., Meehl and others, 2005) and
forest die back (Jones and others, 2009), among many other
environmental responses to warming.

In this paper, we investigate these concepts for the case of
the retreat of mountain glaciers in a warming climate.

Previous studies have noted that many glaciers are out of
equilibrium with the modern climate and thus committed
to additional change (e.g., Bahr and others, 2009; Mernild
and others, 2013; Marzeion and others, 2017, 2018).
Indeed, standard mass-balance measurements report
surface mass balance over the evolving glacier area (e.g.,
WGMS, 2017), and so the widely noted negative mass
balance of most of the world’s glaciers (e.g., IPCC, 2013;
Medwedeff and Roe, 2017) necessarily implies they are out
of equilibrium. A number of studies have gone a step
further, calculating glacier extents that would be in
equilibrium with recent climate observations. Such studies
have targeted South Cascade Glacier, Washington
(Rasmussen and Conway, 2001), Haig Glacier, Canada
(Adhikari and Marshall, 2013), Morteratsch Glacier,
Switzerland (Zekollari and others, 2014; Zekollari and
Huybrechts, 2015), Great Aletsch Glacier, Switzerland
(Jouvet and others, 2011), as well as collections of glaciers
in the Alps (Lüthi and others, 2010; Carturan and others,
2013) and Bhutan (Rupper and others, 2012). These studies
have highlighted a striking discrepancy between current
and equilibrium glacier geometries in specific settings;
here, we explore the fundamental controls on this response.
We first illustrate the basic behavior of glacier retreat with a
simple model, and introduce metrics for characterizing the
discrepancy between the evolving transient and equilibrium
length responses. We then present experiments in which we
use several additional models of varying complexity to
evaluate how ice dynamics, glacier geometry, and climate
variability control the transient glacier response to gradual
warming.
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1.1. Illustrating disequilibrium with a simple
glacier model
Amountain glacier can be conceptualized as an open system
with memory: it integrates mass accumulated across its
surface into a reservoir of ice, and this reservoir adjusts its
extent to maintain a balance between input in the accumula-
tion zone and output in the ablation zone. The simplest
representation of this behavior is a first-order differential
equation for fluctuations of length, L′, around a steady
state, �L, caused by mass-balance perturbations, b′:

dL0

dt
þ L0

τ
¼ βb0;

where

β ¼
�L
H

: ð1Þ

H is a characteristic ice thickness and τ is the glacier response
timescale, given by

τ ¼ �H=bt; ð2Þ

where bt is the (negative) annual mass-balance rate at the ter-
minus. β is a geometric parameter that scales the length
responses to mass-balance perturbations; as we will see, it
is related to the glacier’s length sensitivity. In this model,
the glacier’s length is the only degree of freedom, so Eqn
(1) is a mass-conservation statement equating ice-volume
change to imbalance between input and output rates (e.g.,
Jóhannesson and others, 1989).

The basic model represented by Eqns (1) and (2) has been
widely used to explore glacier responses to climate perturba-
tions (e.g., Jóhannesson and others, 1989; Harrison and
others, 2001; Oerlemans, 2001, 2007; Roe and O’Neal,

2009). While various formulations for the response timescale
and glacier-sensitivity parameters have been proposed,
members of this family of models all resolve the same basic
behavior. For an instantaneous mass-balance change Δb at
t= 0, the glacier asymptotically approaches a new geometry
described by �Lþ ΔL, where accumulation and ablation are
again balanced. The solution of Eqn (1) for this case is

L0ðtÞ ¼ ΔLð1� e�t=τÞ;

where
ΔL ¼ τβΔb: ð3Þ

Another important analytical solution to Eqn (1) is the case of
a linear trend in mass balance ( _b ≡ db=dt), starting at t= 0:

L0ðtÞ ¼ τβ _b½t � τð1� e�t=τÞ�: ð4Þ

For t≫ τ, Eqn (4) approaches L0ðtÞ ¼ τβ _bðt � τÞ. Thus, at
long timescales, there is a lag of τ behind the length at
which the glacier would remain in equilibrium with the
climate as it changes. We refer to this evolving length as
the glacier’s equilibrium response, defined by

L0eqðtÞ ¼ τβ _bt: ð5Þ

Figure 1a shows the responses of a glacier with an arbitrary
timescale τ to mass-balance changes imposed instantaneously
or as linear trends. Results are plotted as normalized by τ in
time and |ΔL| in length. Solid lines show the transient length
changes and dashed lines show the equilibrium responses
(Eqn (5)). Four rates of forcing are shown: the same total
mass-balance change Δb is applied instantaneously (black),
or gradually applied over periods of 2τ (blue), 6τ (red), and
50τ (gold).

a

b c

Fig. 1. The response of a simple glacier model to a step function and sustained trends in climate forcing. (a) Normalized length response to a
climate forcing. Solid lines show the transient response, dashed lines show the instantaneous equilibrium length. The climate forcing is
applied as a step function (black), and as a trend over periods of 2τ (blue), 6τ (red), and 50τ (gold), where τ is the glacier response
timescale. (b) Degree of disequilibrium in normalized length. (c) Fractional equilibration, which proceeds identically for all climate trends
until the forcing stops.
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We will refer to the difference between transient and
equilibrium responses (L0 and L0eq; solid and dashed lines) at
any given time as the ‘disequilibrium’. Figure 1b shows this
metric for each forcing, again normalized by |ΔL|. For
mass-balance trends, the degree of disequilibrium
approaches a constant (see the case of the 6τ trend in
Fig. 1b), which depends on the rate of forcing. The response
to a slow trend (50τ, gold curves in Fig. 1) approaches a limit-
ing case in which the glacier responds quasi-statically, and its
degree of disequilibrium is negligible.

During a warming period, the degree of disequilibrium is a
measure of a glacier’s overextension, and thus the amount of
additional retreat that is already guaranteed even with no
further climate change. Climate researchers have introduced
the concept of ‘committed warming’ as a quantity describing
the warming that will still occur even if anthropogenic forcing
stabilized (e.g., Hansen and others, 1985; Wigley and
Schlesinger, 1985; Wigley, 2005); similar metrics exist for
committed sea-level rise and ice-sheet loss (e.g., Meehl and
others, 2005; Price and others, 2011; Goldberg and others,
2015). The reference state used to define the committed
change varies in the literature. In this paper, we use the term
‘committed retreat’ to refer to the additional retreat that must
occur for the glacier to reach equilibrium should warming
stop abruptly at a given time. In this sense, its magnitude is
equivalent to the degree of disequilibrium, though committed
retreat also has a time dependence: once the forcing stops, the
realization of committed retreat is still governed by τ.

The ratio L0=L0eq is another way to express a glacier’s
lagged response to a climate trend. At any instant in time,
this is the fraction of the total (equilibrium) adjustment that
the glacier has attained for the amount of climate change
that has already occurred. We will refer to this as ‘fractional
equilibration’. It is a useful measure of the committed retreat
in the context of the changes that have already been
observed. For example, a fractional equilibration of 33%
would mean that twice as much retreat as has already
occurred is committed to happen in the future, if the
climate stopped changing at that moment. Figure 1c shows
the evolution of L0=L0eq. Note that the fractional equilibration
progresses identically for all three rates of gradual forcing
(blue, red, and gold curves) until the forcing stops.

Figure 1 highlights some very general behavior discussed
in the previous section: systems with memory produce a
lagged response when a gradual forcing is applied, and
their degree of disequilibrium can be significant when the
duration of the forcing is similar to the response timescale.
Most mountain glaciers have response times between ∼10
and 100 years (e.g., Jóhannesson and others, 1989;
Oerlemans, 2001) – similar in order to the duration of
anthropogenic climate forcing to date (∼100 years; IPCC,
2013). The results from this simple model show that neither
the instantaneous nor the quasi-static limits realistically
describe recent glacier changes, nor those that can be
expected in the near future. However, applying these con-
cepts to observations or projections requires using models
that capture the relevant dynamics and can incorporate
glacier and climate observations. To evaluate the important
factors for understanding glacier disequilibrium in today’s
climate, we present several experiments using idealized
glacier geometries forced with gradual warming trends. In
the next section, we describe the four models used, and the
idealized glacier settings. We then compare the hierarchy

of models to evaluate the importance of ice dynamics.
Next, we investigate the role of glacier geometry by assessing
response times across a range of geometries, and by consid-
ering uncertainty in ice thickness. Finally, we consider
several issues that climate variability can bring to estimating
or modeling glacier disequilibrium.

2. METHODS

2.1. Linear models
The simplest model we consider in our experiments is given
by Eqns (1) and (2). However, this model assumes that the
glacier has a single dynamical stage: mass-balance fluctua-
tions cause an immediate tendency on the glacier length,
L′, damped exponentially on the timescale τ. Roe and
Baker (2014) evaluated the ability of Eqn (1) to emulate the
behavior of a shallow-ice flowline model as a function of
frequency, f. Equation (1) performs well at low frequencies
(f≪ 1/τ), but the single dynamical stage exaggerates the
high-frequency response. Roe and Baker (2014) developed
a new linear model that incorporates three stages of glacier
response: changes in ice thickness drive changes in ice flux
that, in turn, drive changes in glacier length. Their model
takes the form of a third-order ordinary differential equation:

d
dt

þ 1
eτ

� �3

L0 ¼ 1
e3τ2

βb0; ð6Þ

where τand β are defined as above, and e ¼ 1=
ffiffiffi
3

p
. Following

the terminology in Roe and Baker (2014), wewill refer to Eqns
(1) and (6) as one-stage and three-stage models, respectively.

The three-stage model is governed by the same response-
time parameter as the one-stage, but in a different functional
form (i.e., it arises from the same geometric considerations,
but is not an e-folding timescale). As noted above, the two
models differ primarily at high frequencies; however, these
differences remain relevant at long timescales when the
forcing is a continuous trend. This is evident in the long-
term limits of the one-stage and three-stage responses to a
linear mass-balance trend, _b, starting at t= 0. The one-stage
solution is given by Eqn (4), and the three-stage solution is

L0 tð Þ ¼ τ � 1� 3eτ
t

1� e�t=eτ
� �

þ e�t=eτ t
2eτ

þ 2
� �� �

� β _bt:

ð7Þ

For t≫ τ, Eqn (7) approaches L0ðtÞ ¼ τβ _bðt � 3eτÞ, indicating
a greater lag behind the equilibrium response than the one-
stage model. The fractional equilibration also highlights this
difference. For each model, it is obtained by dividing L0(t)
(Eqn (4) for one-stage, Eqn (7) for three-stage) by the equilib-
rium length response (L0eqðtÞ; Eqn (5)). The factor (τβ _bt) drops
out, leaving

L0=L0eq
		
1�stage¼ 1� τ

t
ð1� e�t=τÞ; ð8Þ

and

L0=L0eq
		
3�stage¼ 1� 3eτ

t
1� e�t=eτ

� �

þ e�t=eτ t
2eτ

þ 2
� �

: ð9Þ
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Both expressions depend only on the glacier’s response time
and the duration of the trend. The exponentials in Eqns (8)
and (9) decay fastest, leaving terms proportional to 1/t in the
long-time limit. However, the one-stage fractional equilibra-
tion asymptotes to 1− τ/t, whereas the three-stage model
asymptotes to a slower 1− 3eτ/t approach to unity, on
account of its greater lag behind the equilibrium response.

Several other analytical glacier models exist in the litera-
ture. For example, Harrison and others (2003) and Lüthi
(2009) both developed dynamical models for area and
volume fluctuations, which effectively have two stages of
adjustment. Here we limit our selection of analytical
models to the one-stage and three-stage frameworks. These
provide a range in complexity, and allow for straightforward
comparison as they are based on a common set of para-
meters, but, as discussed above, represent different assump-
tions about glacier dynamics.

2.2. Non-linear flowline models
In order to more comprehensively capture glacier dynamics,
we use numerical models that explicitly represent ice
deformation in response to driving stresses. These models
ultimately stem from the Stokes equations,

∇ � σ ij ¼ �ρgi ð10Þ

and

∇ � ui ¼ 0; ð11Þ

where σij is the Cauchy stress tensor, ρ is the density of ice, gi
is acceleration due to gravity, and ui are velocity compo-
nents. Equation (10) expresses local balance between
surface forces (stress gradients) and body forces (gravity)
per unit volume of ice, while Eqn (11) expresses conservation
of mass.

These equations are linked by a constitutive relation
(Glen, 1955) that relates driving stresses to strain rates _εij
(and therefore to velocities):

_εij ¼ A Sn�1
e Sij: ð12Þ

A is the creep parameter that follows an Arrhenius relation-
ship, which we hold constant (see Table 1), and we use a

flow exponent of n= 3. Sij is the deviatoric stress tensor,
defined as the Cauchy stress tensor minus its isotropic pres-
sure component, and S2e ≡ ð1=2Þ Sij Sij is a scalar effective
stress. Finally, a continuity equation gives the evolution of
local ice thickness, h:

dh
dt

¼ b�∇ � F; ð13Þ

where b is the local surface mass-balance rate, and F is the
vertically integrated ice flux. Here basal mass-balance
terms are neglected, and it is assumed that bed geometry is
constant in time, making Eqn (13) equivalent to the evolution
of the ice surface.

The non-linear relationship between stress and strain
(Eqn 12) can require significant numerical computation to
solve in its full form, and for this reason, it is often advanta-
geous to seek approximations to the Stokes equations. A
common one in glaciology is the shallow-ice approximation
(SIA), in which it is assumed that gravitational driving stress is
balanced only by basal shear stress (e.g., Hutter, 1983). If x is
the horizontal coordinate along a glacier flowline, z is the
vertical coordinate, and s is the free ice surface, the driving
stress is given by

σxz ¼ σzx ¼ �ρgzh
ds
dx

; ð14Þ

and all other terms in the stress tensor are neglected. In con-
trast, ‘full-Stokes’ solutions make no such truncations and
solve for the full stress state. The SIA is valid in the limit of
shallow aspect ratios (H/L≪ 1) and has been shown to be a
reasonable approximation for mountain glacier geometries,
although its performance declines for smaller glaciers and
steeper bed slopes (e.g., Le Meur and others, 2004;
Leysinger Vieli and Gudmundsson, 2004; Adhikari and
Marshall, 2011). Intermediate ‘higher order’modeling frame-
works exist that resolve some, but not all, additional stress
components (e.g., Pattyn, 2002; Hindmarsh, 2004); in this
study, however, we limit our comparison to SIA and full-
Stokes models.

We run both a SIA and a full-Stokes model for a 2-D flow-
line, that is, assuming a constant glacier width and neglecting
the influence of lateral boundaries. The SIA equations are
integrated using finite differences and explicit time stepping

Table 1. Glacier and climate parameters for glaciers 1 and 2. The first group of parameters are those imposed in the flowline models, while
the second group are calculated from the full-Stokes model and used to calibrate the linear models

Parameter Symbol Value
Glac. 1 (Glac. 2) if different

Units

Max. elevation Zmax 2500 m
Bed slope tan(φ) 0.2 (0.1)
Melt-season temp. at sea level �Tz¼0 20 °C
Accumulation �P 4 m a−1 (ice equiv.)
Melt factor μ 0.5 m a−1°C−1

Lapse rate Γ 6.5 °C km−1

Deformation parameter A 1.9 × 10−24 Pa−3 s−1

Sliding coefficient C 3.03 × 10−4 (3.82 × 10−4) Pa s1/3 m−1/3

Steady-state length �L 6.55 (13.1) km
Characteristic thickness H 54 (123) m
Terminus mass-balance rate bt −2.12 m a−1 (ice equiv.)
�L=H β 121 (107)
Response time (−H/bt) τ 25 (57) a
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(e.g., Oerlemans, 2001; Roe, 2011) on a 25 m grid. For our
full-Stokes simulations, we use the finite-element model
Elmer/Ice (Gagliardini and others, 2013) with a horizontal
element size of 25 m and ten vertical layers. For both
models, we incorporate a simple Weertman-style sliding
law (e.g., Weertman, 1964; Cuffey and Paterson, 2010):

Sb ¼ Cumb : ð15Þ

Sb is the basal shear stress, ub is the sliding velocity, and m is
the Weertman exponent, or the inverse of the flow exponent
n (i.e., m= 1/3). C is a constant sliding coefficient; however,
note that the sliding velocity depends non-linearly on the
basal shear stress.

We assume an altitude-dependent mass-balance function
b(z) for the flowline models:

bðzÞ ¼ �P � μð�Tz¼0 � ΓzÞ; ð16Þ

where �P is the mean annual accumulation, uniform across
the glacier surface, and �Tz¼0 is the mean melt-season tem-
perature at sea level. μ is a melt factor, relating mass
balance to melt-season temperature, and Γ is the atmos-
pheric temperature lapse rate.

2.3. Steady-state glacier geometries
Our model domains are idealized mountain glaciers with
uniform bed slopes. We first consider two geometries:
glacier 1 has a bed slope of tan (φ)= 0.2 (11.3°), and
glacier 2 has a slope of tan (φ)= 0.1 (5.7°). Both have a
maximum elevation of 2500 m a.s.l. (Fig. 2a). Table 1 dis-
plays the mass-balance and dynamical parameters used in
the models. We use values for sliding and deformation para-
meters (C and A) that are considered typical for mountain gla-
ciers (see, e.g., Budd and others, 1979; Oerlemans, 2001;
Roe, 2011). Our sliding relation (Eqn (15)) is a simplified
version of that presented in Oerlemans (2001), and

subsequently in Roe (2011) and Roe and Baker (2014).
These studies used C= (Hs/fs)

m, whereHs is the ice thickness
and fs is a sliding parameter, which they set at 5.7 × 10−20

Pa−3 s−1 m2 following Budd and others (1979). For simpli-
city, we treat Hs as constant, set at 50 m for glacier 1 and
100 m for glacier 2. These values fall between initial mean
thickness, and thickness after a 2°C warming (described in
the next section). Using the above value for fs, this gives
the constant sliding coefficients in Table 1. Our climate para-
meters are consistent with a temperate, maritime setting.
With the values in Table 1, Eqn (16) gives equilibrium
lengths of 6.55 km (glacier 1) and 13.1 km (glacier 2).
Since an ice elevation–mass-balance feedback is not
included, the equilibrium lengths are analytical functions of
the mass-balance profile and the bed geometries.

The full-Stokes and SIA models agree closely on their
equilibrium thickness profiles, shown in Figure 2b. For the
smaller, steeper glacier (1), mean ice thicknesses are 53 m
(full-Stokes) and 54 m (SIA); and for the larger glacier (2),
123 m (full-Stokes) and 120 m (SIA). The similar thicknesses,
in turn, imply good agreement on estimated response times
(Eqn (2); τ=−H/bt). Using mean thicknesses for H, and
with bt set by Eqn (16), Eqn (2) gives τ= 25 years for
glacier 1, and τ= 57 years for glacier 2 (using full-Stokes
thickness; 56 years for the SIA thickness). It should be
noted that terminus ablation rate for both glaciers is lower
than those observed on many glaciers; this is a consequence
of their constant width.

We use the full-Stokes steady-state geometries to calibrate
the one-stage and three-stage linear models (see the second
group of parameters in Table 1). The elevation, temperature,
and lapse rate parameters we have chosen (Table 1) dictate
that some summer melt occurs at all elevations (i.e.,
�TZmax > 0), making Eqn (16) a continuous, linear function
over our domain. This means that both temperature anomal-
ies (T0) and precipitation anomalies (P0) correspond to
uniform mass-balance anomalies. These mass-balance
anomalies constitute the forcing for the linear models, and

a

c d

b

Fig. 2. Idealized glacier geometries and response to climate variability. (a) Equilibrium configuration for the two geometries used throughout
this study. (b) Equilibrium ice thickness profiles generated with the full-Stokes (blue) and shallow-ice (red) models. The mean ice thickness for
these profiles is used to determine τ in the one- and three-stage models. (c) Length response of all four models to white-noise interannual
variability (σT= 0.7 °C and σP= 0.7 m a−1), for glacier 1. A 2.5 ka segment of a 10 ka model run is shown. The mass-balance anomaly is
shown in the lower panel. (d) Power spectral density for the length responses to variability (glacier 1). Both (c) and (d) show that the one-
stage response has more variance at high frequencies, but the other three models agree closely.
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are given by

b0 ¼ P0 � μT0: ð17Þ

The linear model parameters presented here are a simple
case of those derived for the one-stage model in Roe and
O’Neal (2009) and for the three-stage model in Roe and
Baker (2014), which were generalized to allow for a region
where no melt occurs.

These synthetic geometries are meant to represent two
generic mountain glaciers with distinct response times,
rather than specific settings. However, to put their response
times in context with glaciers around the world, we turn to
Roe and others (2017, supplemental material), who esti-
mated τ, according to Eqn (2), for 37 glaciers based on data
from existing glacier inventories. For example, their time-
scale estimates for Blue Glacier in the Olympic Mountains
(τ ∼ 28 years) and Hintereisferner in the Austrian Alps
(τ ∼ 30 years) are comparable with our glacier 1 (τ= 25
years). Our glacier 2 (τ= 57 years) is similar in timescale to
Saskatchewan Glacier in the Canadian Rockies, Gries
Glacier in the Swiss Alps, or Storglaciären in northern
Sweden (τ ∼ 50; 59 and 60 years, respectively), among
others. The largest glaciers in the Alps likely have even
longer response times, with estimates for individual glaciers
approaching or exceeding a century (cf. Lüthi and others,
2010; Roe and others, 2017).

3. RESULTS

3.1. Model complexity
The one-stage model illustrated the basic response to a
climate trend (Fig. 1); a next step is to investigate the
responses of the more realistic models introduced in the

previous section. Using a hierarchy of models, we can ask
what is the simplest model that can accurately characterize
a glacier’s disequilibrium in a warming climate?

While our ultimate interest is retreat due to a warming
trend, forcing the different models with stochastic climate
variability is a good way to evaluate their relative perform-
ance as a function of frequency. We imposed 10 000 years
of white noise (i.e., equal power at all frequencies) in both
temperature and precipitation, with σT= 0.7 °C and σP=
0.7 m a−1. The resulting std dev. in mass balance is 0.78
m a−1, consistent with variability observed in maritime cli-
mates (e.g., Medwedeff and Roe, 2017). A 2500-year
segment of our model output for the smaller glacier geometry
is shown in Figure 2c; it is immediately clear that the one-
stage model is an outlier, with much more high-frequency
variability than the other three models. This is evident also
in the power spectrum (Fig. 2d): the one-stage model has
considerably less damping at high frequencies, consistent
with the results of Roe and Baker (2014). The std devs. of
the length fluctuations, σL, are 335, 267, 295, and 284 m
for the one-stage, three-stage, SIA, and full-Stokes models,
respectively. These represent departures of 18% (one-
stage), 6% (three-stage), and 4% (SIA) with respect to the
full-Stokes model. Thus, it appears that for small fluctuations
around a mean state, the simplified dynamics of the three-
stage and SIA models hold up as reasonable approximations,
while the one-stage model should be treated with caution,
especially on short timescales.

We now investigate our central question of the transient
response to a climate trend. In the following analyses, we
stipulate a linear trend in melt-season temperature of 2°C
over 200 years, and no changes in precipitation, typical of
the observed midlatitude trends over the last century (e.g.,
IPCC, 2013). Figure 3a shows the length responses of all

a b

d

e

c

Fig. 3. The role of model complexity in response to a trend. (a) Length responses to a 2°C warming over 200 years, for all four models. The
dashed lines show length at which the glaciers would be in equilibrium if the climate were to stabilize at that time. (b) Disequilibrium, defined
as the difference between transient and equilibrium length, for glacier 2. (c) Fractional equilibration for glacier 2. (d) and (e) As for (b) and (c),
but for glacier 1. The gray vertical line in each panel marks 140 years into the warming period as a reference point for current disequilibrium
assuming anthropogenic forcing began ∼1880.
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four models and both geometries. All models exhibit a signifi-
cant lag behind the equilibrium response (dashed line).
However, the one-stage model’s tendency to respond too
quickly means that it underestimates the glacier’s lag
behind the changing climate. The good agreement among
three-stage, SIA, and full-Stokes models suggests that the
basic transient response to warming is not significantly
affected by higher order ice dynamics, consistent with the
conclusions of previous studies (e.g., Leysinger Vieli and
Gudmundsson, 2004).

Figures 3b and c show the disequilibrium and fractional
equilibration (as defined in Section 1.1), respectively, for
glacier 2 (τ= 57 years), and Figures 3d and e show results
for glacier 1 (τ= 25 years). The degree of disequilibrium is
much more pronounced for the longer timescale glacier,
consistent with its longer memory of previous, cooler
climate states. It is important to note that the absolute
length changes are greater for glacier 2 on account of its shal-
lower bed slope. However, in terms of the fractional equili-
bration, we see that, by the end of the 200-year warming
period, the three-stage, SIA, and full-Stokes models all
show that the ‘slower’ glacier 2 has only worked through
about half of its total adjustment to a 2°C warming; glacier
1 is about three-quarters of its way to equilibrium. The verti-
cal lines in each panel mark 140 years into the warming as a
rough comparison for the current state of glaciers, assuming
anthropogenic forcing started ∼1880 (e.g., IPCC, 2013).
The basic physics of a lagged response to a trend implies
that glaciers with long response times can be assumed to
be significantly out of equilibrium with our current climate,
both in an absolute and fractional sense.

3.2 Three different glaciers with the same response
time
The marked difference in the responses of glaciers 1 and 2 to
gradual warming shows the important role of the response
time in setting the disequilibrium. Despite the simple form
of the response time (Eqn (2)), a number of geometric, cli-
matic, and rheological parameters are implicitly represented
in the characteristic values H and bt. Given the range that
these parameters may take for different glaciers around the
world, it is important to consider the applicability of Eqn
(2) across a range of parameter space. As an illustrative
example, we present two additional idealized glaciers with
different parameters for rheology, mass balance, and bed
geometry. However, these parameters have been tuned in
such a way to give response times (54 and 56 years) compar-
able with that of glacier 2 (57 years).

For simplicity, we only compare the SIA and three-stage
models in this section. Table 2 displays the parameters and
resulting geometries for glaciers 2–4, and SIA thickness pro-
files are shown in Figure 4a. Glacier 3 is slightly steeper than
glacier 2, but does not slide over its bed, resulting in a greater
steady-state mean ice thickness (176 m). Glacier 4 is steeper
yet, and even with no sliding, has a mean thickness of only
91 m. Despite its smaller dimensions, it has a long response
time because its terminus does not extend very far into
lower, warmer elevations. All glaciers have the same accu-
mulation rate of 4 m a−1 ice equivalent, but the maximum
elevations and melt-season temperatures have been manipu-
lated to give terminus positions, and thus mass-balance rates
(bt), that yield the desired response times.

The three-stage model parameters are again based on the
SIA equilibrium geometries. Figure 4b shows three-stage and
SIA length responses to the same gradual warming (2°C over
200 years), which again agree closely. Owing to their differ-
ent geometries, the length sensitivities (and thus equilibrium
responses) are slightly different for the three glaciers.
However, as Figure 4c shows, their responses are nearly
identical in terms of fractional equilibration. Thus, we con-
clude that a glacier’s fractional equilibration depends on its
timescale (e.g, Figs 3c and e), but not on the glacier’s
length sensitivity (Fig. 4). This point is demonstrated analytic-
ally by the three-stage solution for fractional equilibration
(Eqn (9)). Furthermore, that the three-stage model, which is
blind to the details of sliding vs deformation, can emulate
the SIA responses for each case suggests that glacier geom-
etry encapsulates ice dynamics well enough to dictate the
basic response to forcing. This makes τ – which is based on
geometry and mass balance – a versatile metric for under-
standing glacier responses across a wide range of settings.

3.3. Uncertainty in response time
The essential lagged nature of the glacier response to a trend
is robust across a range of geometries (Figs 3 and 4), but it
depends on τ, and, via Eqn (2), ice thickness. In reality, ice
thickness is often uncertain, and different estimation
methods can yield different τ for the same glacier (e.g.,
Harrison and others, 2001; Oerlemans, 2001). So, we now
evaluate how uncertainty in τ affects disequilibrium. The
good agreement with the SIA and full-Stokes flowline
models makes the three-stage model an efficient analytical
tool. In the previous sections, we had the benefit of thickness
profiles generated by the numerical models, and our results
show that the mean ice thickness was an appropriate charac-
teristic value to use in calculating τ. However, direct

Table 2. Parameters and initial geometries for three glaciers with similar timescales. Results from the SIA model (bottom group) are inputs in
the three-stage model

Parameter Symbol Glacier 2 Glacier 3 Glacier 4 Units

Bed slope tan(φ) 0.1 0.125 0.2
Deformation parameter A 1.9 × 10−24 2.4 × 10−24 2.4 × 10−24 Pa−3 s−1

Sliding coefficient C 3.82 × 10−4 n/a n/a Pa s1/3 m−1/3

Max. elevation Zmax 2500 3000 2500 m
Melt-season temp. (sea level) �Tz¼0 20 21 21 °C

Mean ice thickness H 120 176 91 m
Terminus balance rate bt −2.12 −3.25 −1.63 m a−1 (ice equiv.)
Response timescale τ 57 54 56 a
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ice-thickness measurements on mountain glaciers are
uncommon, and for more complex geometries, the mean
may not be the best characteristic thickness for τ. Thus, we
will use thickness in the following experiments to directly
manipulate the response timescale.

We consider a broad uncertainty in thickness: a Gaussian
probability distribution with a std dev. of σH ¼ �H=4, where
�H is the mean thickness of the original flowline profiles
that calibrated the three-stage model. This gives σH= 13 m
for glacier 1, and σH= 31 m for glacier 2. With this value,
the ± 2σH range is equal to �H itself. Since τ is directly

proportional to H, this yields a probability distribution for τ
that also has the ± 2στ range equal to τ. Figure 5a shows
the resulting length responses to our 2°C warming trend,
with shaded regions showing the ± 1σ and ± 2σ bounds.
The effect of timescale uncertainty is a sustained spread in
length responses and, accordingly, in disequilibrium (Figs
5b and d) and fractional equilibration (Figs 5c and e). Errors
in the response timescale introduce very long-term effects:
the spread grows throughout the warming period, and per-
sists well after the climate has re-stabilized. For instance,
for glacier 2, the ± 1σ range in timescale (a spread of 28

a

b c

Fig. 4. Three glaciers with ∼55-year response timescales. (a) Initial equilibrium profiles for the three glaciers. Glacier 2 is the same as the larger
glacier in the main text. Glaciers 3 and 4 do not have basal sliding. (b) Length responses of each glacier in response to a 2°C warming over 200
years. Solid lines are the SIA model response, dotted lines the three-stage model response, and black dashed lines show the instantaneous
equilibrium lengths. (c) Fractional equilibration for each glacier (for clarity, only SIA responses are shown). Despite their different
geometries and dynamics, the glaciers’ transient responses are nearly identical in a fractional sense.

Fig. 5. The spread of responses due to uncertainty in ice thickness. (a) Orange shaded regions show ± 1σL and 2σL bounds for uncertainty in
timescale (στ= τ/4), generated with the three-stage model. The dashed line shows equilibrium length. (b, c) Associated spread in
disequilibrium and fractional equilibration for glacier 2. (d, e) As for (b) and (c), but for glacier 1.
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years) yields a spread of ∼1.3 km in length after 200 years of
warming, or, to use the fractional metric, a range of ∼60 years
to reach 80% equilibration.

While ice thickness is a directly tunable parameter for the
three-stage model, the effects of timescale uncertainty are
also relevant to flowline modeling approaches where ice
thickness depends in part on the rheological parameters
and basal conditions. We used this dependence to tune flow-
line ice thicknesses in Section 3.2; similarly, Roe and Baker
(2014) also showed that the response time (Eqn (2)) captures
glacier response over a range of flowline model parameters.
This suggests that errors in flowline model ice thickness,
whatever their source, would cause errors in the length
response similar to those in Figure 5.

3.4. Uncertainties due to climate variability
So far, we have considered the length response to a gradual
warming in the framework of an idealized climate with no
variations other than the imposed trend. In reality,
however, any external climate forcing will occur in the
midst of natural climate variability, which will continue to
force low-frequency glacier length fluctuations (see Fig. 2c)
on top of the retreat due to long-term warming. Figure 6a
shows this behavior with an ensemble of length responses
for different realizations of white-noise temperature and pre-
cipitation variability, σT= 0.7 °C and σP= 0.7 m a−1, super-
imposed upon the standard warming trend. The responses
shown are 25 of 100 realizations generated using the SIA
model, which was initialized from a steady-state configur-
ation 200 years before the onset of warming in order to
allow the fluctuations of each member to de-correlate. The
three-stage model gives similar results, but is omitted for
clarity. The fact that the ensemble mean is almost exactly
equal to the trajectory for warming without variability rein-
forces that sustained disequilibrium is still the fundamental
response in a noisy, warming climate. While variability
may temporarily kick the glacier closer to its equilibrium
length, it still has a restoring tendency back to the lagged
state. We use a relatively high level of variability in these
experiments to illustrate the potential uncertainties; it can
be expected that a setting with less interannual variability
would yield results more closely resembling the basic,
lagged response.

These noise-driven fluctuations have several implications
that must be considered for modeling the response of any
glacier to climate warming. The possibility that the glacier
was mid-fluctuation at the onset of the trend amounts to an
uncertainty in initial conditions if the preceding climate is
unknown. We illustrate this for the fluctuations driven by
our standard interannual variability (σT= 0.7 °C and σP=
0.7 m a−1). Figure 6b shows the ± 1σ and ± 2σ bounds,
where initial length anomalies are described by the
Gaussian probability distributions with widths of σL for
each glacier. The impact of this uncertainty declines with
time, on a timescale governed by τ. Initial-condition uncer-
tainty does not therefore play a large role 140 years after
the onset of the trend. While for the case considered here,
the initial uncertainty arises from interannual climate vari-
ability, the same concept would apply to other poorly con-
strained climate histories. For example, accounting for
little-ice-age excursions might entail a much larger uncer-
tainty in initial conditions (e.g., Matthews and Briffa, 2005).

Additional impacts of climate variability on glacier dis-
equilibrium are the basic statistical challenges in defining
the mean climate, trends, variability, and any parameters
that rely on these estimates. The pre-trend climatology, equi-
librium length, and the onset and magnitude of the climate
trend are all uncertain quantities in a noisy climate; the
accuracy of their estimates will vary depending on the
level of climate variability and the length and quality of
observational records. Estimates of the response timescale
(τ=−H/bt) will also be affected by climate variability and
the resulting glacier fluctuations. Even with observations,
defining the characteristic values for ice thickness (here,
the mean, �H) and terminus ablation rates (bt) over decadal
timescales may be uncertain due to sampling errors. Both
�H and the terminus elevation (and therefore bt) will vary
with the glacier’s low-frequency response to noise, but the
dominant effect is simply the year-to-year variability in
mass balance at the terminus. To investigate the effects on
response-time estimates, we used the SIA model to track �H
and bt yearly through 10 000 years of climate noise for
both glaciers (again, with σT= 0.7 °C and σP= 0.7 m a−1).
From the �H and bt timeseries, we calculated τ for each indi-
vidual year. We then took running means of the �H and bt
timeseries to create distributions representing estimates of τ
based on 10 and 50 years of observations. The probability
densities for these distributions are shown in Figure 6c. Not
surprisingly, a single year gives a poor estimate of τ, as
shown by the broad, blue curves. The 10-year (red) and
50-year (gold) estimates converge on the steady-state
values of τ= 25 and 57 years (vertical purple lines), but
still have a substantial spread. While only the linear models
require τ as an input parameter, this uncertainty is relevant
for numerical flowline models as well. These sampling
errors will still come to bear on the calibration of the
glacier geometry, mass balance, and flow parameters,
choices that must be made for any model, and which we
have shown here fundamentally affect glacier response.

4. DISCUSSION

4.1. The committed retreat of mountain glaciers
The result that transient glacier retreat lags the equilibrium
response to a climate trend stems fundamentally from the
multi-decadal response times common to most mountain gla-
ciers. Our focus on idealized glaciers, rather than specific set-
tings, helps to demonstrate this basic behavior and the factors
that affect it. Our comparison of several idealized geometries
shows that a glacier’s fractional equilibration during a
climate trend depends strongly on its response time (glacier
1 vs 2 in Fig. 3), but not on its length sensitivity (glaciers 2–
4 in Fig. 4). Figure 4 also shows that the fractional equilibra-
tion is the same for different parameter combinations that
yield approximately the same value for τ=−H/bt. This
makes τ a fundamental and useful parameter for categorizing
glacier responses across a wide range of settings and geom-
etries. Some general conclusions can thus be drawn about
committed glacier retreat around the world based on esti-
mated response times and observed climate trends (see,
e.g., Roe and others, 2017).

Consider that our synthetic 54–57-year glaciers are<50%
into their adjustments to the total warming that has occurred
in 140 years (see Fig. 4c). Given the observed global surface
warming of ∼1°C in the last century (e.g., IPCC, 2013), our
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results imply that longer timescale glaciers (τ>50 years) are
substantially out of equilibrium today. In other words, their
observed retreats are startling underestimates of the total
retreat already built in by the industrial-era warming that
has occurred to date. For large glaciers with shallow slopes
and large length sensitivities, absolute disequilibrium may
be on the order of kilometers (see Fig. 3b). This is consistent
with several detailed modeling studies that have assessed
committed retreat for large valley glaciers in the Alps. For
example, Zekollari and others (2014) estimated the commit-
ted retreat of Morteratsch Glacier, based on 2001–10
climate, at nearly 2 km, while Jouvet and others (2011) calcu-
lated a striking 6 km commitment for Great Aletsch Glacier
based on 1989–2008 climate.

Additionally, while we have focused here on length
changes, committed retreat also implies committed volume
loss, which has direct implications for committed sea-level
change (e.g., Mernild and others, 2013; Marzeion and
others, 2017, 2018). While volume tends to react more
quickly than length (e.g., Oerlemans, 2001), the committed
loss should still depend on τ, making the distribution of indi-
vidual response times an important consideration for regional
or global estimates of committed volume change, and the
associated impacts on sea level and hydrology.

Given some level of current disequilibrium, how certain is
a glacier’s committed retreat? For any component of the
climate system, committed change is a useful metric

because it is based on forcing that has occurred thus far,
and is thus partitioned from changes associated with the
much less certain future of anthropogenic forcing.
However, a choice of definition must be made as to the
way in which forcing is hypothetically stabilized. We have
based committed retreat on an abrupt stabilization of tem-
perature, as warming is a direct forcing on glacier extent
(and is more robust than precipitation trends for most glaciers
around the world; see, e.g., Roe and others, 2017). However,
the relevant forcing is different for other aspects of the climate
system. Early studies on committed climate warming were
based on a fixed atmospheric composition (e.g., Hansen
and others, 1985; Wigley and Schlesinger, 1985; Wigley,
2005), but this approach did not account for the finite lifetime
of atmospheric greenhouse gases. As greenhouse gas emis-
sions are the primary source of anthropogenic forcing (e.g.,
IPCC, 2013), more recent approaches calculate the climate
commitment based on zero additional emissions. Although
there is a broad spread of uncertainty, the central estimates
are that if all anthropogenic emissions ceased today, the
natural decline of greenhouse gases and the delayed ocean
response would offset each other, leaving global tempera-
tures approximately flat for the next few centuries (Solomon
and others, 2009; Armour and Roe, 2011; Mauritsen and
Pincus, 2017). These studies suggest that the observed
warming to date constitutes a hard lower bound from
which to calculate committed glacier retreat; and while

a

c

b

Fig. 6. Uncertainties due to climate variability. (a) An ensemble of length responses from the SIA model for a 2°C warming over 200 years, plus
100 realizations of white-noise variability (only 25 are shown). The ensemble mean (black) closely follows the length response to warming
with no variability (red). The instantaneous equilibrium length for warming with no variability is plotted for reference (dashed line). (b)
Uncertainty in initial state due to unknown climate history prior to the onset of warming (t= 0). Shaded regions show the ± 1σL and 2σL
bounds for the same level of variability as in (a). Initial disequilibrium decays toward the long-term retreat trajectory. (c) Distributions of
estimated timescale generated by tracking �H and bt through 10 000 years of noise-driven fluctuations. Blue is the distribution when
sampling �H and bt from a single year; red is the distribution for 10-year means; gold is the distribution for 50-year means; and the purple
line shows the steady-state value.
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calculating retreat based on current temperatures is an idea-
lized approach, it is consistent with recent literature on com-
mitted change in the climate system.

4.2 Implications for climate reconstructions
The fact that glaciers lag their equilibrium response to a
climate trend has important consequences for inferring past
climates using numerical glacier models. A failure to
account for current disequilibrium in the glacier state can
render estimates of past climate significantly in error. Let
dL/dT|eq be defined as the equilibrium sensitivity of a
glacier to a change in mean temperature. For a glacier
model, this is a fixed function of the parameters chosen by
the modeler. In principle, one can use the model to infer
the climate change required for a length change ΔLeq,
between two equilibrium climate states. Assuming only
changes in temperature, this can be written as:

ΔTeq ¼ ΔLeq
dL=dTjeq

: ð18Þ

However, because of the modern disequilibrium, an error is
incurred if the modern length is used in calculating ΔLeq. For
example, consider a moraine recording the glacier’s equilib-
rium preindustrial extent, from which ΔLeq in Eqn (18) is set to
Lmoraine− Lmodern. However, using glacier 2 as an example
(τ= 57 years), the modern glacier has retreated less than
halfway to its equilibrium length, so this assumed ΔLeq
would underestimate the true equilibrium length change:

ΔLeq ¼ ðLmoraine � LmodernÞ � 1
2

× ΔLeq
		true: ð19Þ

There are multiple possible consequences of the error. First, if
the model sensitivity is correct, the resulting estimate of ΔTeq
is less than half as large as the true climate change. The other
possibility is that the glacier model parameters are tuned in a
way that renders the model less than half as sensitive as it
should be. This latter pitfall will occur when ΔTeq is con-
strained by instrumental or proxy records. Figure 7 illustrates
this for glacier 2’s response to a 1°C per century warming
(dashed line), beginning in 1880. The average rate of
retreat over the last 140 years (solid orange line) gives a

transient sensitivity of −1.1 km°C−1, whereas the equilib-
rium sensitivity (gray line) is actually −2.9 km°C−1. A
model tuned to the transient sensitivity would miscalculate
any climate changes further in the past, and would also
underestimate the natural glacier variability, σL. Finally,
some combination of errors in ΔTeq and the sensitivity is
also possible. Whatever the case, it is clear that initializing
a model in steady state with contemporary climate and
length observations, when the target glacier is in fact far
out of equilibrium, means building significant error into
any analyses that rely on the model.

A number of approaches for reconstructing climate from
glacier records exist (see, e.g., a review by Mackintosh and
others, 2017 and references therein). However, the effects
of disequilibrium have not been emphasized in the recon-
struction literature. The consequences of ignoring current
disequilibrium would vary by methodology and by glacier,
but our results suggest that disequilibrium should be factored
into any length sensitivity estimates or model calibrations
based on current geometry. Errors would be particularly
problematic for estimates of late-Holocene climate changes
relative to the modern climate, and for glaciers with long
response times. They become less of an issue for larger
glacier changes, such as retreat from the Last Glacial
Maximum, where the modern disequilibrium is a smaller
fraction of the overall change; or, for glaciers with fast
response times, whose current state is closer to equilibrium.

4.3. Implications for glacier projections
Modeling glacier retreat is also a vital part of predicting and
adapting to impacts of glacier change in a warming climate,
such as sea-level and hydrological changes (e.g., IPCC,
2013). Uncertain emissions scenarios and regional climate
variability introduce a large amount of uncertainty into loca-
lized projections (e.g., Deser and others, 2014), but because
the metric of committed retreat is independent of future
forcing by construction, it can provide a useful bound for
assessing future impacts. Current disequilibrium is also
important to assess because the model sensitivity issues dis-
cussed above also apply to projections of future retreat: what-
ever the future forcing scenario, initializing glacier models in
steady state with the current climate will introduce errors into
the predicted retreat and the glacier’s contributions to catch-
ment hydrology.

Another point related to future glacier change is that over
the initial period of gradual warming (i.e., up to a few multi-
ples of τ), terminus retreat accelerates even as the rate of
warming remains steady. This acceleration can be concep-
tualized in the three-stage framework of Roe and Baker
(2014): melt-driven thinning reduces flux into the terminus
region, eventually making ablation more efficient at driving
terminus retreat. This sequence is more drawn out for
longer response timescales, and our results suggest that gla-
ciers with 50+ year response times have not emerged from
this early stage of adjustment to anthropogenic warming. In
other words, their recent responses may be characterized
more by thinning than by terminus retreat. Indeed, dramatic
thinning has been observed for many mountain glaciers (see,
e.g., Paul and others, 2004), and may be a precursor to
increased retreat for long-timescale glaciers. These stages of
response should thus be considered when interpreting
recent or future changes in retreat rates.

Fig. 7. Transient vs equilibrium sensitivity. The dashed orange line
shows the three-stage length response of glacier 2 to the 1°C
century−1 warming, beginning in 1880. Transient length sensitivity
inferred from terminus retreat (solid orange line) underestimates
the glacier’s equilibrium sensitivity (gray line). The transient
sensitivity is −1.1 km°C−1, while the true equilibrium sensitivity is
−2.9 km°C−1.
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4.4 The role of higher order ice dynamics
In addition to considering model tuning and initialization, the
representation of ice dynamics is also an important decision
that the modeler faces, and the degree of complexity required
ultimately depends on the question being asked: shallow-ice
solutions can give errors in the spatial pattern of ice thickness
or velocities (e.g., Le Meur and others, 2004; Greve and
Blatter, 2009; Adhikari and Marshall, 2011, 2013);
however, Adhikari and Marshall (2013) also showed that
the discrepancies between higher and lower order solutions
were greater for advance scenarios than for retreat.
Leysinger Vieli and Gudmundsson (2004) compared full-
Stokes and SIA model responses to step changes in climate,
making the important point that accurate mass-balance infor-
mation may be more critical than higher order dynamics for
modeling glacier responses to climate changes. The close
agreement between our SIA and full-Stokes simulations indi-
cate that higher order stresses do not play a large role in the
basic, lagged response to gradual warming, consistent with
the insights of Leysinger Vieli and Gudmundsson (2004)
and Adhikari and Marshall (2013). We find that accurate
ice thickness and mass balance, which robustly characterize
the response time, aremore important thanmodel complexity
for representing disequilibrium, provided that three-stage (as
opposed to one-stage) dynamics are used if a linear model is
chosen (see also discussion in Roe and Baker, 2014).
However, a uniform bed geometry and absence of lateral
effects make it more likely that SIA (and three-stage) assump-
tions hold. Several studies have shown that the choice of
model dynamics may affect the steady-state thickness distri-
bution (e.g., Le Meur and others, 2004; Adhikari and
Marshall, 2013). Thus, for modeling experiments that target
specific glacier geometries, the inclusion of higher order
stresses may become important for representing the degree
of disequilibrium through the response time, even if higher
order mechanics do not play a major role in retreat.

4.5. Outlook
Estimates of past climate change and predictions of future
glacier retreat must take the current disequilibrium of glaciers
into account. However, without perfect knowledge of the
system, there is an unavoidable quandary here: current
climate is typically well observed, but current disequilibrium
may be uncertain because the response time can only be esti-
mated approximately (e.g., Fig. 5). On the other hand, while
the disequilibrium was less (though not necessarily absent)
at the start of the industrial era, the climate then may be less
certain. Nevertheless, records of glacier front position at the
beginning of the industrial era are abundant (e.g., Leclercq
and others, 2014), and several global datasets of temperature
extend back to 1880 (e.g., Rhode and others, 2013). Our
opinion is that in many parts of the world, sufficient climate
and glacier data exist to incorporate disequilibrium into inter-
pretations of glacier change and model initialization. One
approach is a dynamic calibration, using a model of at least
three-stage complexity, to account for transient effects and
identify glacier and climate parameters (e.g., Table 1) together
with their uncertainties that best reproduce the observed
retreat. Such a calibrated model could then be used to esti-
mate older climate changes or future glacier responses.
Dynamic calibration has been applied to a number of well-
observed glaciers (e.g., Oerlemans, 1997; Lüthi and others,

2010; Jouvet and others, 2011; Zekollari and others, 2014).
Additionally, Roe and others (2017) applied this approach,
using the three-stage model, to compare natural glacier vari-
ability with observed retreats around the world. In any
event, it is vital to produce reconstructions and projections
that reflect uncertainties in model parameters. Because each
glacier setting is unique, modeling efforts are often targeted
to a single glacier, and it is easy for calibration choices to be
made that affect the model sensitivity. As the results of this
paper demonstrate, the errors can be severewhenmodern gla-
ciers are assumed to be near equilibrium.

5. SUMMARY AND CONCLUSIONS
Because many mountain glaciers have response timescales
that are similar in order to the period of time over which
humans have been changing the climate, we should not
assume that they are close to equilibrium in response to
this forcing (see Fig. 1). We explored the factors that influ-
ence this disequilibrium and that modelers must take into
account to properly capture the transient response.
Specifically, we considered (a) the representation of ice
dynamics; (b) the glacier’s geometry, and therefore its
response timescale; and (c) the effects of climate variability
on model initialization and glacier response. Our main find-
ings in these areas are summarized as follows:

(a) A comparison of four models of ice dynamics forced by
the same ramp warming showed that, at a minimum,
three-stage linear dynamics were necessary to accur-
ately capture a glacier’s degree of disequilibrium. The
one-stage linear model captures the basic phenomenon
of disequilibrium, but underestimates its magnitude by
about a factor of two in our results; this is because it
too-rapidly translates mass-balance perturbations into
length changes. A number of other low-order glacier
models exist in the literature; our comparisons indicate
that accurately capturing the lag between forcing and
terminus response (or equivalently, the phase lag in
the cross spectrum; Roe and Baker, 2014), as the
three-stage does, is a prerequisite for any analytical
model used to estimate disequilibrium. The three-stage
model emulates the response of the flowline models
very well, despite its dependence on fixed parameters
linearized about a mean state. Roe and Baker (2014)
showed that the three-stage parameters could be cali-
brated for more complex valley geometries, and could
still reasonably emulate flowline model output for ter-
minus fluctuations. However, they noted greater dis-
agreement for large excursions that spanned slope
breaks in the glacier bed. It can be expected that
linear-response models will become less accurate
when modeling a retreat that traverses significant
changes in the valley geometry. Thus, while the three-
stage model succeeded here in modeling time-varying
glacier retreat, more complex geometries may call for
at least SIA or higher order flowline models.

(b) In contrast to the close agreement of three-stage and flow-
line model outputs, the distribution of responses asso-
ciated with uncertainty in ice thickness, and thus
timescale, is quite broad (Fig. 5). This is ultimately a
simple result – adjusting the timescale, by construction,
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adjusts how quickly the glacier can respond to a climate
change, and thus how much it lags a trend. However,
because this lag is unyielding, errors related to the
response timescale are persistent, and necessarily bear
upon estimates of current disequilibrium and projections
of future retreat.

(c) Random, interannual climate variability introduces
several complications when modeling transient glacier
retreat. Terminus fluctuations due to a noisy mass-
balance history imply an uncertainty in initial condi-
tions, but the effects of an initial length perturbation
decay and are of negligible significance after a few mul-
tiples of τ. However, a noisy climate can also have per-
sistent impacts on modeled glacier responses, because
mass-balance variability and glacier fluctuations mean
that estimates of glacier parameters are subject to sam-
pling errors. Even with multi-decade running means,
substantial year-to-year variability can mean non-
trivial uncertainty in the mean value of τ (Fig. 6c), and
thus the degree of disequilibrium. Finally, length
responses to an ensemble of noisy, warming climates
demonstrate that, while climate variability can cause
glacier retreat to slow or even reverse for a short
period, the terminus does indeed fluctuate around its
lagged, not equilibrium, trajectory (Fig. 6a). So, while
climate variability inevitably clouds our metrics for
quantifying it, glacier disequilibrium should be consid-
ered a robust phenomenon in the global aggregate,
and as the warming trend continues.

While individual glacier dynamics can be quite compli-
cated, a simple lesson from our work is clear: mountain gla-
ciers with multi-decadal response times are among the many
components of the climate system whose modern state is one
of both realized and committed change. We have already
witnessed significant glacier retreat over the past century,
but the disequilibrium of these systems with the modern
climate means that responses to continued climate
warming are inextricably compounded by ongoing adjust-
ment to the warming of the past decades. However, if esti-
mates of the glacier timescale, length sensitivity, and the
warming trend are available, current disequilibrium can be
accounted for when calibrating models and interpreting
observations. The basic behavior and dependencies dis-
cussed here can provide a framework for refining reconstruc-
tions of past climate, estimates of current glacier state, and
projections of future glacier retreat.
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