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9 Abstract

10 Flood risk studies using stationary flood frequency analysis techniques is commonplace. However, it is 
11 increasingly evident that the stationarity assumption of these analyses does not hold as anthropogenic 
12 climate change could shift a site’s hydroclimate beyond the range of historical behaviors. We employ 
13 nonstationary flood frequency models using the generalized extreme value (GEV) distribution to model 
14 changing flood risk for select seasons at twelve National Parks across the U.S.  In this GEV model, the 
15 location and/or scale parameters of the distribution are allowed to change as a function of time-variable 
16 covariates.  We use historical precipitation and modeled flows from the Variable Infiltration Capacity 
17 model (VIC), a land-surface model that simulates land-atmosphere fluxes using water and energy 
18 balance equations, as covariates to fit a best nonstationary GEV model to each site. We apply climate 
19 model projections of precipitation and VIC flows to these models to obtain future flood frequency 
20 estimates. Our model results project a decrease in flood risk for sites in the southwestern U.S. region and 
21 an increase in flood risk for sites in northern and eastern regions of the U.S. for the selected seasons. The 
22 methods and results presented will enable the NPS to develop strategies to ensure public safety and 
23 efficient infrastructure management and planning in a nonstationary climate.
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37 1. Introduction

38 Anthropogenic climate change has increased global mean annual land-surface air temperatures and 
39 evidence supports a change in the behavior of precipitation (Hartmann et al. 2013) and streamflow 
40 extremes (Hirsch and Ryberg 2012; Mallakpour and Villarini 2015; Ahn and Palmer 2016). Given the non-
41 stationary nature of our climate system at present, the common assumption in traditional flood 
42 frequency analysis techniques that flood risk will remain stationary into the future must be questioned - 
43 climate change is anticipated to continue to shift hydroclimate beyond the range of historical behaviors 
44 (Milly et al. 2008). 

45 As temperatures rise, we expect an increase in total precipitable water in the atmosphere (Trenberth et 
46 al. 2003), which was already observed over much of North America (Ross and Elliott 1996). 
47 Consequently, Hartmann et al. (2013) suggest a likely observed increase in either the frequency or 
48 intensity of heavy precipitation events across North America, particularly in central North America.  
49 Studies using extreme value theory and precipitation-temperature scaling also generally support this 
50 claim (DeGaetano 2009; Wasko and Sharma 2017). 

51 However, trends in observed extreme streamflow are more variable (Ahn and Palmer 2016). Lins and 
52 Slack (1999) found both increasing and decreasing trends in historical streamflow extremes in the 
53 eastern U.S. with a general decrease in extremes in western U.S., the Pacific Northwest, and the 
54 Southern Plains.  Mallakpour and Villarini (2015) found an increase in the frequency of observed floods 
55 in the central U.S., with no evidence to support a change in the observed magnitude of flood events. In 
56 the southwestern U.S., Hirsch and Ryberg (2012) found decreasing flood magnitudes associated with 
57 increasing atmospheric greenhouse gas (GHG) levels, while the eastern and northeastern U.S. showed 
58 increasing, but non-significant, flood magnitude trends in response to carbon dioxide increases.

59 Flood risk analysis using distributions like the log-Pearson type III (LPIII) distribution, generalized 
60 extreme value (GEV) distribution, generalized Pareto distribution (GPD), and lognormal distribution, all 
61 of which assume stationarity of risk, is commonplace (Stedinger et al. 1993; Coles 2001; England et al. 
62 2018). Several more recent approaches assess time-varying (i.e., nonstationary) characteristics of flood 
63 risk. AghaKouchak et al. (2013) and Salas et al. (2018) provide a detailed review of nonstationary 
64 extreme value analysis methods. Applying a nonstationary GEV distribution and allowing the location 
65 and/or scale of the distribution to change linearly as a function of time or various hydrometeorological 
66 covariates is one approach to assess changing flood risk (Coles 2001; Salas and Obeysekera 2014; 
67 Condon et al. 2015). This framework has been applied to extreme streamflow using time (Katz et al. 
68 2002; Salas and Obeysekera 2014), meteorological variables (Towler et al. 2010; Condon et al. 2015), 
69 and climate indices (Lima et al. 2015) as covariates. Further, Condon et al. 2015 assessed future flood 
70 risk with this model framework using future projections of covariates generated from global climate 
71 models (GCMs). 

72 For 12 National Park Service (NPS) sites (chosen to capture an array of hydroclimates in the U.S.) we 
73 project future 21st century flood risk by applying the nonstationary generalized extreme value 
74 distribution and projections of hydrometeorological variables from an ensemble of GCMs covering two 
75 Representative Concentration Pathways (RCP). There are few applications of nonstationary flood risk 
76 analysis to the management of U.S. public lands and conservation areas - the results presented in this 
77 work will help enable the NPS to better understand flood risks in a nonstationary context, which could 
78 subsequently be used for efficient short- and long-term management of protected resources.
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79 2. Methods

80 Nonstationary Generalized Extreme Value Distribution

81 The starting point of the nonstationary flood frequency model is the assumption that the seasonal or 
82 annual flow extremes are assumed to follow the generalized extreme value distribution, a common 
83 statistical tool used in hydrological extreme value analysis. Described with further detail in Coles (2001), 
84 block maxima of independent and identically distributed random variables follow the generalized 
85 extreme value distribution, with the cumulative distribution function:

86  (1)

𝐺(𝑧) = 𝑒𝑥𝑝{ ― [1 + 𝜀(𝑧 ― 𝜇
𝜎 )]

―1
𝜀 }

87 where . The variable  is the streamflow maxima and the parameters , , and {𝑧:1 +  𝜀(𝑧 ― 𝜇)/𝜎 ≥  0} 𝑧 𝜇 𝜎
88  represent the distribution location, scale, and shape, respectively. The location determines the 𝜀
89 position of the distribution, the scale determines the spread of the distribution, and the shape 
90 determines the behavior of the upper tail. Equation (1) follows the form of the type I extreme value 
91 distribution (EVI), or Gumbel distribution, when the shape (ε) is 0 (light tail). Similarly, equation (1) 
92 follows the form of the EVII, or Frechet distribution, when the shape (ε) is positive (heavy tail) and the 
93 EVIII, or Weibull distribution, when the shape is negative (bounded tail). Coles (2001) provides details on 
94 extreme value theory. 

95 Nonstationarity is incorporated by allowing the location or both the location and scale parameters of 
96 equation (1) to vary as a function of covariates. The nonstationary location and scale are modeled as 
97 follows:

98          (2)𝜇(𝑡) =  𝛽0,𝜇 + 𝛽1,𝜇𝑥1,t +… + 𝛽𝑛,𝜇𝑥𝑛,𝑡

99                 (3)𝜎(𝑡) = 𝑒𝑥𝑝 ( 𝛽0,𝜎 + 𝛽1,𝜎𝑥1,t +… + 𝛽𝑛,𝜎𝑥𝑛,𝑡)

100
101 where  variables represent covariates and  denotes the fitted parameters. The transformed scale 𝑥 𝛽
102 parameter is used to ensure the scale is positive.  Stationary and nonstationary GEV parameters are 
103 estimated using the method of maximum likelihood (MLE), a general and flexible parameter estimation 
104 technique also used in similar studies (Katz et al. 2002; Towler et al. 2010; Condon et al. 2015). 

105 The best nonstationary model (i.e. the best set of covariates) is selected by minimizing the Akaike 
106 Information Criteria (AIC), which penalizes the negative maximized log-likelihood of a model for the 
107 number of parameters used. AIC is defined by:

108           (4)𝐴𝐼𝐶 =  2(𝑁𝐿𝐿𝐻) +2(𝑘)

109 where is the negative maximized log-likelihood obtained from MLE and  is the number of 𝑁𝐿𝐿𝐻 𝑘
110 independently adjusted model parameters (Akaike 1998). As an alternative to AIC, similar nonstationary 
111 GEV studies have used the likelihood ratio test, a common statistical tool used to test the significance of 
112 improvement in maximized log-likelihoods for nested models. However, with the number of models we 
113 test for in this study, outcomes of the likelihood ratio test would lose their interpretability (Katz 2013) 
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114 and some of the models we fit are not nested. For this reason, the likelihood ratio test is not used as the 
115 primary selection criteria, though nonstationary models selected by AIC are still compared with the 
116 stationary GEV distribution with the likelihood ratio test.  

117 Exceedance probability levels for stationary GEV distributions are solved with equation (5):

118                     (5)𝑧𝑝 = 𝜇 ―
𝜎
𝜀[1 ― { ―ln (1 ― 𝑝)} ―𝜀]

119 where is the streamflow with exceedance probability and the parameters μ, σ, and ε represent the 𝑧𝑝 𝑝 
120 GEV distribution location, scale, and shape (with )(Coles 2001). Traditional stationary return level 𝜀 ≠ 0
121 calculations are not applicable in a nonstationary context, where exceedance periods change with each 
122 new GEV distribution. We follow the methods explained in Salas and Obeysekera (2014) and Condon et 
123 al. (2015) for nonstationary risk assessment. The above methods were largely implemented in R (R Core 
124 Team 2016) with the package ‘extRemes’ (Gilleland and Katz 2016).

125 For comparison to the stationary and nonstationary GEV models, we also fit a stationary log-Pearson 
126 type III distribution to flow maxima. LPIII distributions are fit using the method of moments following 
127 USGS Bulletin #17B flood flow frequency guidelines (IACWD 1982). We include a visual process summary 
128 of stationary and nonstationary GEV flood frequency analysis in pages i-iii in Appendix A. 

129 Here we assess future flood risk using an ensemble of climate model outputs (further described in 
130 subsequent sections). We first select a best nonstationary GEV distribution from a set of observed 
131 covariates. We then simulate model behavior with an ensemble of climate models to evaluate the risk of 
132 exceeding some site-specific critical flow within a selected design life. Steps for the analysis are:

133 1. A performance period of interest (e.g., 2040-2069), a project life (e.g., 20 years), and a critical flow are 
134 selected for a site. 

135 2. One climate model is selected at random from the ensemble of climate models. From the randomly 
136 selected model, a block of covariate data is randomly selected within the period of interest and with a 
137 length of the project life (e.g., a 20-year block of data is selected from 2040-2069 model data).

138 3. The best nonstationary GEV distribution is applied to the selected block of covariate data to 
139 determine year-specific risks of exceeding the critical flow.

140 4. Following Salas and Obeysekera (2014), the total risk of exceeding the critical flow within the project 
141 life is calculated (e.g., the risk of exceeding the critical flow over the 20-year project life). 

142 5. Steps 2-4 represent one simulation. This process is repeated for each RCP scenario, multiple climate 
143 models and the many blocks of covariate data with a length of the project life within the period of 
144 interest. This provides a distribution of simulated probabilities of exceeding the critical flow over the 
145 project life. 

146 3. Study Sites and Data

147 Study Sites

148 Twelve USGS streamflow gauge sites of interest to the NPS are the focus of this study. Figure 1 provides 
149 details regarding the sites and their locations. These sites have a long historical USGS gauging record and 
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150 represent a diverse array of hydroclimates where impactful flooding events occurred in the past. 
151 Further, these basins contain minimal hydrologic alteration, ensuring that human-caused land cover 
152 change and river alterations (e.g., diversions, dams, and other structures) are not impacting these study 
153 sites. Some recent notable and documented flood events for these basins include the January 1997 
154 flood in Yosemite National Park, 2006 flooding in Mount Rainier National Park, and the 2017 flooding in 
155 the Ozark National Scenic Riverways. 

156

157 Figure 1 Location (top) and descriptions (below) of the 12 sites.

158 Drainage areas of the selected basins range from 49 to 11,560 square miles. The sites have varied 
159 characteristics in terms of the timing of annual maxima, monthly precipitation, and streamflow 
160 seasonality, as shown in Figure 2. Sites in the northwest (Nisqually R. and Queets R.) experience flood 
161 events during the winter wet season.  Western sites (Merced R., North Fork Virgin R., Lamar R., and 
162 Pacific Cr.) exhibit delayed spring streamflow response to winter precipitation, suggesting snowmelt 
163 driven river systems. Similarly, historical flooding events often occur in the spring for these sites, 
164 suggesting snowmelt might be an important driving mechanism for flooding events at these sites. The 
165 remaining eastern U.S. sites (Buffalo R., Current R., Clear Fork, Cataloochee Cr., Potomac R., and Flat 
166 Brook), exhibit variable streamflow and precipitation characteristics, with the majority of floods 
167 clustered over October-June.
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168

169

170 Figure 2 For each study site a bar plot for the count of annual peak mean daily flows occurring within each month (left axis), 
171 boxplots of mean daily flows for each month (right axis), and a line plot of average monthly precipitation (far right axis) using 
172 1951-2005 data.

173 The months we use for seasonal analysis at each site are based on the timing of annual peak flows 
174 (water year), the distribution of daily flows for each month, and the monthly average precipitation. 
175 Generally, the season we select for analysis includes consecutive months that experience the highest 
176 frequency of annual maximum mean daily flows. We also assess monthly average precipitation and daily 
177 streamflow patterns to assess potential dominant flood mechanisms (e.g., runoff and snowmelt flood 
178 drivers), and we consider historical trends in the timing of observed seasonal peak flows. As further 
179 described in the coming section, the season we select to investigate for each site also corresponds to 
180 the seasonal covariates we use. To capture antecedent conditions that might influence flooding (e.g., 
181 snowpack), we also include covariates from the previous season. 

182 Data

183 We use observed USGS gauge mean daily streamflow measurements available between 1951 and 2005 
184 (water year) for analysis (U.S. Geological Survey 2016). Water years missing data within the season of 
185 interest are excluded from the analysis. 

186 We use 1951-2005 (water year) observed season average daily precipitation of each contributing basin 
187 and season average daily hydrologic model generated flow as covariates – daily values of both are 
188 provided by the U.S. Bureau of Reclamation.  These are determined using Livneh et al. (2015) 1/16o 
189 spatially gridded meteorological data derived from NOAA Cooperative Observer Network stations. 
190 Hydrologic model flows provided by the U.S. Bureau of Reclamation are generated from the Variable 
191 Infiltration Capacity model (VIC). VIC is a land-surface model that simulates spatially gridded, land-
192 atmosphere fluxes using the water and energy balance equations (Liang et al. 1994). Modeled flows are 
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193 generated using VIC version 4.1.2h. This model requires daily precipitation, maximum and minimum air 
194 temperature, and wind speed as input forcings required (Prata 1996; Kimball et al. 1997; Thornton and 
195 Running 1999; Bohn et al. 2013).  We use land-cover input data and calibrated parameters from Maurer 
196 et al. (2002) and Livneh et al. (2013). Details on the VIC model are available in: 
197 http://vic.readthedocs.io/en/master/. VIC river routing was performed at 1/16o grids using the routing 
198 model from Lohmann et al. (1996). 

199 The use of VIC model flows as a covariate in nonstationary flood frequency analysis is a novel 
200 contribution of this research.  We introduce this because we posit that VIC model flows better capture 
201 the water and energy balance features of a basin as well as basin specific land-cover features compared 
202 to average meteorological covariates (e.g., precipitation).  We assess and summarize VIC model 
203 performance compared to observed flows for each site and season in Table A-1; while the modeled 
204 flows for several of the sites have strong biases, the correlations between VIC model flows and observed 
205 streamflow for each site are strong. While the observed magnitude of daily flow (and potentially the 
206 observed magnitude of the seasonal peak daily flow) might be poorly captured by VIC model 
207 simulations, the seasonal average flow from the VIC model corresponded well with the observations and 
208 thus, is a valuable covariate.  Furthermore, we found a strong correlation between seasonal average 
209 flows from the VIC model and the peak mean daily flow for the season of interest for each site (Table A-
210 2).  This suggests the seasonal average flows contain information about the seasonal peak flow; also, the 
211 VIC model flows capture the hydrologic processes in the basin providing complementary information. 
212 With this motivation, we use the seasonal average flows from VIC model as one of the covariates in the 
213 nonstationary GEV model.

214 We use an ensemble of projected 1951-2099 (water year) season average daily precipitation of each 
215 contributing basin and season average daily VIC model generated flow as future covariates, which 
216 enables 21st century projections of flood risk.  Daily values of both are provided by the U.S. Bureau of 
217 Reclamation. Projections are determined using the U.S. Bureau of Reclamation’s LOCA CMIP5 dataset. 
218 This dataset contains 64 projections of daily, 1/16o gridded precipitation and maximum/minimum 
219 temperature from an ensemble of 32 general circulation models, covering two different greenhouse gas 
220 RCPs. We investigate RCP 8.5, a scenario representing high and increasing greenhouse gas levels into the 
221 future, and RCP 4.5, a scenario representing a radiative forcing stabilization scenario (van Vuuren et al. 
222 2011). LOCA CMIP5 data is generated from bias corrected and downscaled coarse GCM data (with a 
223 spatial resolution generally exceeding 1o) from the CMIP5 multi-model ensemble  (Taylor et al. 2011). 
224 Additional information on these processes can be found in Pierce et al. (2014, 2015) and Reclamation 
225 (2016). This data is available from the downscaled CMIP3 and CMIP5 climate and hydrology projections 
226 archive at https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/. Information on the CMIP5 project 
227 can be found in Taylor et al. (2011). The GCMs we use through the LOCA CMIP5 dataset, the responsible 
228 modeling groups, and an acknowledgement of the World Climate Research Program's Working Group on 
229 Coupled Modelling are presented in Table A-3. The same methods as described earlier are used to 
230 generate VIC model flows. However, because average daily wind speed is not available in the LOCA 
231 CMIP5 dataset, historical Livneh et al. (2015) daily average wind speeds are used for the projected VIC 
232 wind speed forcing.

233

234
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235

236

237

238

239

240

241 Overview

242  A process summary of this research appears in Figure 3. For each site of interest, we first fit a best 
243 nonstationary GEV model to observed historical seasonal peak flows considering historical season 
244 average and previous season average daily precipitation and hydrologic model generated flows as 
245 potential covariates. For each site a set of models is generated by fitting nonstationary GEV distributions 
246 to different combinations of these covariates, and, as mentioned, the best model (i.e., the best subset of 
247 covariates) is selected using AIC. We then apply to the best model for each site the LOCA CMIP5 
248 ensemble of future covariate projections through 2099 (water year). For each year of each GCM 
249 ensemble member, the GEV distribution is projected using the projected covariate values. This provides 
250 time-varying estimates of flood frequency distributions into the future. We also include traditional flood 
251 frequency models (stationary GEV and LPIII distributions) in our analysis for comparison.

252 4. Results

253 The best nonstationary GEV model was evaluated for each site using observed season and previous 
254 season average precipitation and VIC model flow as potential covariates. Table 1 lists the covariates 
255 selected in the best model for each park. 

Figure 3 Process structure of this study.
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256

257 Table 1 Best model parameters selected for the 12 sites. ‘Pr’ represents the seasonal average precipitation covariate and ‘VIC’ 
258 represents seasonal average flow covariate. A ‘Pre’ prefix indicates a previous season average covariate.  

259 For all sites, nonstationary GEV distributions are selected over stationary GEV distributions based on AIC 
260 scores.  The p-values from the likelihood ratio test (compared to the stationary GEV distribution) are 
261 also included, all of which are less than 0.05. VIC flows are selected as a covariate in the best model for 
262 eight of the sites while precipitation is selected in the best model for five of the sites. Five models select 
263 covariates from the previous season. The best models for eight of the sites have both a nonstationary 
264 location and scale. The remaining best models only have a nonstationary location, these are the sites 
265 with a blank in the ‘GEV Scale’ column of Table 1. Appendix B includes more detail on the site specific 
266 fitted parameter values for each best model. For all but two sites, the location and/or scale of the 
267 models shift upward with an increase in the selected covariate; higher previous season VIC flows for 
268 USGS 06188000 (Lamar River) and 01440000 (Flat Brook) result in a decrease in the GEV location and/or 
269 scale parameters.  One possible explanation of this is that both of these sites experience winter 
270 snowfall, so a higher historical previous season VIC flow for these sites might suggest earlier winter 
271 snowmelt which will decrease the likelihood of obtaining high spring peak flows.

272 For each site, we use the best nonstationary GEV model (Table 1) and the ensemble of LOCA CMIP5 
273 covariate projections to obtain an ensemble of 1% seasonal exceedance probability flows from 1951 to 
274 2099 (water year). Because there are 64 model runs in the LOCA CMIP5 ensemble, 64 1% exceedance 
275 probability flows are generated for every year (32 for RCP 4.5 and 32 for RCP 8.5). 1% exceedance 
276 probability flows for each RCP scenario are grouped into approximately 30-year time periods from 1951 
277 to 2099 (water year) and box plotted. The results for all sites appear in Figure 4. The 1% seasonal 
278 exceedance probability flows generated from the stationary LPIII distribution (blue line) and stationary 
279 GEV distribution (red line) fit to historical observed floods are also included. Similar plots for the 2% and 
280 0.2% exceedance probability flows for each site are available in Appendix B.
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281

282 Figure 4 Boxplots of 1% exceedance probability flows generated from the best GEV model and LOCA CMIP5 covariate projections 
283 for each site. Stationary LPIII (blue line) and GEV (red line) 1% exceedance probability levels are also included.

284 For some sites (Nisqually R. and Queets R., for example), an increase in all quantiles of 1% exceedance 
285 probability flows generated from the LOCA CMIP5 ensemble into the future is apparent (shown as an 
286 upward shift in the boxplots over time). The opposite is apparent for USGS 09405500 (N. Fork Virgin R.), 
287 which is showing decreasing trends. For many of the sites (Buffalo R. and Current R., for example), we 
288 see an increase in the interquartile range and an increase in the difference between the 5th and 95th 
289 percentiles of the ensemble 1% exceedance probability flows. For a site like USGS 03460000 
290 (Cataloochee River), where the median remains relatively steady, the changes in the interquartile range 
291 and 5th and 95th percentiles suggests an increase in variability in the magnitude of 1% exceedance 
292 probability flows generated by the LOCA CMIP5 ensemble. We see an increase in the difference 
293 between the 5th and 95th percentiles of the ensemble 1% exceedance probability flows for all but one 
294 site, which we address further in the discussion. 

295 RCP 4.5 and RCP 8.5 ensemble trends are generally in agreement with one another for each site, with 
296 the RCP 8.5 ensemble typically having a stronger trend compared to the RCP 4.5 ensemble. When 
297 comparing the nonstationary 1% exceedance probability flows to those generated from the stationary 
298 LPIII and GEV distributions, for USGS 11264500 (Merced River), for example, from 1951-2099 generally 
299 between 75%-95% of the nonstationary 1% exceedance probability flows are below the stationary GEV 
300 1% exceedance probability flow. This suggests that while the stationary GEV distribution might generally 
301 have a higher estimate of the seasonal 1% exceedance probability level, there are years where projected 
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302 covariate conditions would indicate a higher seasonal 1% exceedance probability level with a 
303 nonstationary distribution. When calculating the risk of exceeding some threshold flow over a design 
304 life, if the design life includes a seasonal period where exceedance probability levels are large, the 
305 probability of exceeding that threshold flow will drastically increase. This will be captured in the 
306 simulation results explained further in the results section. 

307 Results for USGS 03409500 (Clear Fork River) suggests stationary GEV and LPIII distributions estimate 
308 significantly lower 1% exceedance probability levels compared to the nonstationary model. Results 
309 specific to Clear Fork River in Appendix B show that nonstationary exceedance probability levels diverge 
310 from those of the stationary GEV model for larger exceedance probabilities. There are several extended 
311 periods of missing data for the Clear Fork River site, so limited data could be responsible for diverging 
312 performance between the stationary and nonstationary models for more extreme flows.  The stationary 
313 and nonstationary GEV models generate very different 1% exceedance probability levels for USGS 
314 09405500 (North Fork Virgin River). We found the stationary GEV distribution to poorly capture the 
315 more extreme observed historical floods. We also see from the likelihood ratio test there is a great 
316 degree of confidence (Table 1) that the log-likelihood of the nonstationary model is better than that of 
317 the stationary GEV distribution for this site.

318 A spatial plot of the percent change of the median 1% exceedance probability flow generated from the 
319 RCP 8.5 LOCA CMIP5 ensemble between the 1951-1979 and 2040-2069 periods for each site appears in 
320 Figure 5. We see a decrease in the median CMIP 1% seasonal exceedance flows for our study sites in the 
321 southwestern U.S. and an increase in the northern and eastern U.S. 

322

323 Figure 5 Percent change of RCP 8.5 2040-2069 median 1% seasonal exceedance flow compared to the 1951-1979 median 1% 
324 exceedance seasonal flow generated from the best GEV model and LOCA CMIP5 covariate projections for each site.

325 Using the best model and the LOCA CMIP5 ensemble at each site, we simulate the probability of 
326 exceeding a predetermined threshold flow over a specific design life. Here, we select a 20-year design 
327 life using the site’s stationary GEV 1% exceedance probability flow as the threshold flow of interest. We 
328 run a large number of simulations for each site and boxplot simulation results. We separate simulations 
329 by the same 30-year periods and by RCP scenario as in Figure 4. Results are shared in Figure 6. 
330 Stationary GEV (red line) and LPIII (blue line) risks are also included.  Similar plots for site specific critical 
331 flows are shared in Appendix B. 

332
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333

334 Figure 6 Simulation results for the risk of exceeding the site’s stationary GEV 1% seasonal exceedance probability flow in a 20-
335 year project life using the best nonstationary GEV model and LOCA CMIP5 covariate projections for each site (boxplots). 
336 Stationary LPIII (blue line) and GEV (red line) risks are also included.  

337 While trends between Figure 4 and Figure 6 are similar, we generally see stronger trends in Figure 6. 
338 This is reasonable – a stronger trend will be present when a slight change in seasonal risk is 
339 compounded over 20 years. Further, as we saw in Figure 4, there are years within this LOCA CMIP5 
340 ensemble where covariate conditions result in a much higher seasonal risk compared to the stationary 
341 distribution. If a high-risk season is included in a simulation’s 20-year period, the risk of exceeding the 
342 threshold flow over the 20-year period will significantly increase.

343 5. Discussion and Conclusion

344 In this paper we utilize the nonstationary generalized extreme value distribution and an ensemble of 
345 climate models to project seasonal 21st century flood risk for twelve sites representing a diverse array of 
346 hydroclimates across the U.S. National Park Service.  Results generally project a decrease in seasonal 
347 flood risk for sites in the southwestern U.S. and increases for sites in the eastern and northwestern U.S.  
348 These seasonal results display similar patterns to those identified by Hirsch and Ryberg (2012), who 
349 explored changes in historical flood magnitude under rising carbon dioxide levels at 200 sites across the 
350 U.S.  Thus, our projections suggest the trends identified over the time period of Hirsch and Ryberg’s 
351 work (where the median record length was 1916-2008) are likely to continue.  Further, for many sites 
352 we find flows generated from a hydrologic model improved performance of nonstationary generalized 
353 extreme value distributions when used as covariates.  



13

354 For long-term climate impact studies, two dominant sources of uncertainty arise when using an 
355 ensemble of climate models – future scenario uncertainty and model uncertainty (Hawkins and Sutton 
356 2009). Described further in Deser et al. (2012), future scenario uncertainty can refer to, for example, 
357 uncertainty in greenhouse gas representative concentration pathway trajectories. Our results present 
358 only RCP 4.5 and RCP 8.5 scenarios, which typically display similar trends with stronger shifts in flood risk 
359 associated with RCP 8.5 trajectories. Model uncertainty arises from the fact that different climate 
360 models, given the same forcing, have different responses. As mentioned, for many of our sites, we see 
361 increases in the interquartile range and 5th-95th percentile range in our ensemble results presented in 
362 Figure 4 and Figure 6. This increase could relate to model uncertainty – climate models with different 
363 physical and numerical parameterizations can have diverging responses to long-term projections of 
364 input forcings. Our use of 32 GCMs, in part, characterizes this model uncertainty,  and one common 
365 technique to combine results from climate ensembles involves taking a simple or weighted average of 
366 ensemble results (Tebaldi and Knutti 2007). The median and interquartile range in the boxplots 
367 presented in Figure 4 and Figure 6 represent this central tendency of the ensemble results, noting that 
368 we utilize the same 32 GCMs for each site and we do not assess individual GCM model performance for 
369 each site.

370 Our selection of covariates for the best model at each site assumes these general, seasonal average 
371 covariates represent the dominant driving mechanisms for seasonal peak flows; shifts in covariates 
372 suggest a shift in flood risk due to these dominant flood mechanisms.  However, multiple flood 
373 generating mechanisms can be present (Berghuijs et al. 2016) and dominant flood mechanisms might 
374 exhibit long-term changes (e.g., transitions from snowmelt to rainfall-runoff) (Knowles et al. 2006; Das 
375 et al. 2013). For example, covariates like precipitation would not capture flood behavior shifts that arise 
376 from more precipitation falling as rainfall (as opposed to snowfall) in the future. This could be an 
377 advantage of using VIC model-generated flow as a covariate as we did here - shifting flood generating 
378 mechanism behavior for a basin can be better captured because VIC accounts for water and energy 
379 balance aspects of a system.  In our study, VIC model generated flows are more frequently evident as a 
380 best model covariate over precipitation. Shifting dominant flood mechanisms might also shift the timing 
381 of peak floods out of the seasons studied in this paper, which cannot be accounted for in our covariates. 
382 Additionally, it is important to note the biases that remain in these VIC models (Table A-1)  and in the 
383 LOCA CMIP5 dataset following bias correction and downscaling processes (Pierce et al. 2014, 2015).

384 We acknowledge this study does not assess nonstationary GEV model parameter uncertainties. 
385 Assessing standard errors from maximum likelihood estimates can provide more information on best 
386 model performance and exploring this method in a Bayesian framework could also be valuable for 
387 assessing uncertainties (Katz et al. 2002; Renard et al. 2013; Cheng et al. 2014; Bracken et al. 2018). 
388 Further, investigating the sensitivity of exceedance probability levels generated from the set of models 
389 we fit for each site (i.e., the models with different combinations of covariates) could also provide insight 
390 into model performance and the relationship between covariates and flood risk that these models 
391 capture.  

392 Beyond investigating the uncertainties described above, future studies could investigate other flood 
393 characteristics like duration. Further, performing this analysis on each season of a year could provide 
394 more information on annual peak flood behavior for a particular site. 

395 Overall our projected shifts in future flood behavior can help NPS managers assess the need to develop 
396 climate change informed flood risk management plans at different park units. This can improve risk 
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397 mitigation for cultural and natural resources, inform site selection and design for roads, trails, and other 
398 infrastructure, and help managers proactively plan for trail and facility closures to ensure visitor safety. 
399 Due to the sensitive nature of flood planning for certain projects, we suggest utilizing these results, 
400 along with an in-depth understanding of specific basins and other industry accepted flood hazard 
401 evaluation techniques, to assess the factor of safety required for flood planning under a changing 
402 climate. 

403
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Appendix A

The following pages i-iii include a process summary of the stationary and nonstationary flood frequency analysis used in this 
paper. The process in these pages is demonstrated in an annual timeframe, though it is just as applicable to a seasonal 
timeframe.  
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USGS Site USGS Site Description Season NSE COR PBIAS (%)
Oct-Mar -0.19 0.67 -42.0
Oct-Dec -0.05 0.79 -45.9
Oct-Mar 0.62 0.92 -23.9
Oct-Dec 0.65 0.93 -27.7
Apr-Jun -0.42 0.78 19.3
Nov-Mar -0.05 0.69 -72.1
Apr-Jun 0.34 0.79 -1.7
Nov-Mar -1.30 0.66 -11.8
Apr-Jun -0.46 0.77 -69.4
Nov-Mar -1.20 0.53 -4.1
Apr-Jun 0.26 0.82 -48.6
Nov-Mar -0.16 0.61 -19.4
Jan-May 0.77 0.89 -14.1
Oct-Dec 0.87 0.95 21.2
Feb-May 0.55 0.82 -9.8
Nov-Jan 0.55 0.92 20.6
Dec-Mar 0.53 0.82 -23.4
Oct-Nov 0.37 0.85 -28.5
Dec-Mar 0.18 0.87 19.8
Oct-Nov 0.60 0.93 -6.0
Feb-May 0.71 0.85 -6.0
Nov-Jan 0.59 0.84 27.3
Feb-Apr 0.43 0.78 -20.6
Nov-Jan 0.64 0.82 -10.2

3 11264500 Merced River at Happy Isles Bridge near Yosemite, CA

VIC Model Skill Scores

1 12082500 Nisqually River near National, WA

2 12040500 Queets River near Clearwater, WA

6 13011500 Pacific Creek at Moran, WY

4 09405500 North Fork Virgin River near Springdale, UT

5 06188000 Lamar River near Tower Ranger Station, YNP

9 03409500 Clear Fork near Robbins, TN

7 07056000 Buffalo River near St. Joe, AR

8 07067000 Current River at Van Buren, MO

12 01440000 Flat Brook near Flatbrookville, NJ

10 03460000 Cataloochee Creek near Cataloochee, NC

11 01646500 Potomac River near Washington, D.C. Little Falls Pump

Table A-1 Monthly VIC model flow performance metrics over seasons of interest (using observed historical forcings from 1951-
2005 water years) for each study site. Metrics include the Nash-Sutcliffe efficiency, Pearson correlation, and percent bias.

USGS Site USGS Site Description Season COR
Oct-Mar 0.68
Oct-Dec 0.59
Oct-Mar 0.62
Oct-Dec 0.50
Apr-Jun 0.72
Nov-Mar 0.14
Apr-Jun 0.80
Nov-Mar 0.55
Apr-Jun 0.52
Nov-Mar -0.09
Apr-Jun 0.69
Nov-Mar 0.12
Jan-May 0.61
Oct-Dec -0.05
Feb-May 0.60
Nov-Jan 0.26
Dec-Mar 0.59
Oct-Nov -0.03
Dec-Mar 0.50
Oct-Nov 0.32
Feb-May 0.70
Nov-Jan 0.30
Feb-Apr 0.65
Nov-Jan 0.03

11 01646500 Potomac River near Washington, D.C. Little Falls Pump

12 01440000 Flat Brook near Flatbrookville, NJ

9 03409500 Clear Fork near Robbins, TN

10 03460000 Cataloochee Creek near Cataloochee, NC

7 07056000 Buffalo River near St. Joe, AR

8 07067000 Current River at Van Buren, MO

5 06188000 Lamar River near Tower Ranger Station, YNP

6 13011500 Pacific Creek at Moran, WY

3 11264500 Merced River at Happy Isles Bridge near Yosemite, CA

4 09405500 North Fork Virgin River near Springdale, UT

1 12082500 Nisqually River near National, WA

2 12040500 Queets River near Clearwater, WA

Table A-2 Correlations between season of interest and previous season of interest average mean daily VIC model flow and the 
site’s season of interest peak mean daily flow. For each site, the top set of months correspond to the season of interest and the 
bottom set of months corresponding to the previous season of interest. 
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Table A-3 The 32 CMIP5 models in the LOCA CMIP5 ensemble. We acknowledge the World Climate Research Program’s Working 
Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and 
making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and 
Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global 
Organization for Earth System Science Portals.
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Appendix B

Seasonal Flow Analysis
The following pages contain seasonal flood frequency results for all 12 sites.  Sites and the season of interest

are shared in the table below.
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21st Century Flood Risk Projections for the U.S. National Park Service
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