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Abstract

Flood risk studies using stationary flood frequency analysis techniques is commonplace. However, it is
increasingly evident that the stationarity assumption of these analyses does not hold as anthropogenic
climate change could shift a site’s hydroclimate beyond the range of historical behaviors. We employ
nonstationary flood frequency models using the generalized extreme value (GEV) distribution to model
changing flood risk for select seasons at twelve National Parks across the U.S. In this GEV model, the
location and/or scale parameters of the distribution are allowed to change as a function of time-variable
covariates. We use historical precipitation and modeled flows from the Variable Infiltration Capacity
model (VIC), a land-surface model that simulates land-atmosphere fluxes using water and energy
balance equations, as covariates to fit a best nonstationary GEV model to each site. We apply climate
model projections of precipitation and VIC flows to these models to obtain future flood frequency
estimates. Our model results project a decrease in flood risk for sites in the southwestern U.S. region and
an increase in flood risk for sites in northern and eastern regions of the U.S. for the selected seasons. The
methods and results presented will enable the NPS to develop strategies to ensure public safety and
efficient infrastructure management and planning in a nonstationary climate.
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1. Introduction

Anthropogenic climate change has increased global mean annual land-surface air temperatures and
evidence supports a change in the behavior of precipitation (Hartmann et al. 2013) and streamflow
extremes (Hirsch and Ryberg 2012; Mallakpour and Villarini 2015; Ahn and Palmer 2016). Given the non-
stationary nature of our climate system at present, the common assumption in traditional flood
frequency analysis techniques that flood risk will remain stationary into the future must be questioned -
climate change is anticipated to continue to shift hydroclimate beyond the range of historical behaviors
(Milly et al. 2008).

As temperatures rise, we expect an increase in total precipitable water in the atmosphere (Trenberth et
al. 2003), which was already observed over much of North America (Ross and Elliott 1996).
Consequently, Hartmann et al. (2013) suggest a likely observed increase in either the frequency or
intensity of heavy precipitation events across North America, particularly in central North America.
Studies using extreme value theory and precipitation-temperature scaling also generally support this
claim (DeGaetano 2009; Wasko and Sharma 2017).

However, trends in observed extreme streamflow are more variable (Ahn and Palmer 2016). Lins and
Slack (1999) found both increasing and decreasing trends in historical streamflow extremes in the
eastern U.S. with a general decrease in extremes in western U.S., the Pacific Northwest, and the
Southern Plains. Mallakpour and Villarini (2015) found an increase in the frequency of observed floods
in the central U.S., with no evidence to support a change in the observed magnitude of flood events. In
the southwestern U.S., Hirsch and Ryberg (2012) found decreasing flood magnitudes associated with
increasing atmospheric greenhouse gas (GHG) levels, while the eastern and northeastern U.S. showed
increasing, but non-significant, flood magnitude trends in response to carbon dioxide increases.

Flood risk analysis using distributions like the log-Pearson type Il (LPIII) distribution, generalized
extreme value (GEV) distribution, generalized Pareto distribution (GPD), and lognormal distribution, all
of which assume stationarity of risk, is commonplace (Stedinger et al. 1993; Coles 2001; England et al.
2018). Several more recent approaches assess time-varying (i.e., nonstationary) characteristics of flood
risk. AghaKouchak et al. (2013) and Salas et al. (2018) provide a detailed review of nonstationary
extreme value analysis methods. Applying a nonstationary GEV distribution and allowing the location
and/or scale of the distribution to change linearly as a function of time or various hydrometeorological
covariates is one approach to assess changing flood risk (Coles 2001; Salas and Obeysekera 2014;
Condon et al. 2015). This framework has been applied to extreme streamflow using time (Katz et al.
2002; Salas and Obeysekera 2014), meteorological variables (Towler et al. 2010; Condon et al. 2015),
and climate indices (Lima et al. 2015) as covariates. Further, Condon et al. 2015 assessed future flood
risk with this model framework using future projections of covariates generated from global climate
models (GCMs).

For 12 National Park Service (NPS) sites (chosen to capture an array of hydroclimates in the U.S.) we
project future 215t century flood risk by applying the nonstationary generalized extreme value
distribution and projections of hydrometeorological variables from an ensemble of GCMs covering two
Representative Concentration Pathways (RCP). There are few applications of nonstationary flood risk
analysis to the management of U.S. public lands and conservation areas - the results presented in this
work will help enable the NPS to better understand flood risks in a nonstationary context, which could
subsequently be used for efficient short- and long-term management of protected resources.
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2. Methods
Nonstationary Generalized Extreme Value Distribution

The starting point of the nonstationary flood frequency model is the assumption that the seasonal or
annual flow extremes are assumed to follow the generalized extreme value distribution, a common
statistical tool used in hydrological extreme value analysis. Described with further detail in Coles (2001),
block maxima of independent and identically distributed random variables follow the generalized
extreme value distribution, with the cumulative distribution function:

—t
1+ e(z — ,u)] ’
o
(1)

where {z:1 4+ e(z —w)/o = 0}. The variable z is the streamflow maxima and the parameters y, o, and
€ represent the distribution location, scale, and shape, respectively. The location determines the
position of the distribution, the scale determines the spread of the distribution, and the shape
determines the behavior of the upper tail. Equation (1) follows the form of the type | extreme value
distribution (EVI), or Gumbel distribution, when the shape (€) is 0 (light tail). Similarly, equation (1)
follows the form of the EVII, or Frechet distribution, when the shape (g) is positive (heavy tail) and the
EVIII, or Weibull distribution, when the shape is negative (bounded tail). Coles (2001) provides details on
extreme value theory.

G(2) = exp{ —

Nonstationarity is incorporated by allowing the location or both the location and scale parameters of
equation (1) to vary as a function of covariates. The nonstationary location and scale are modeled as
follows:

.u(t) = ﬁO,,u + ,Bl,uxl,t +..+ ﬁn,uxn,t (2)

U(t) = exp (.80,0 + ﬁl,axl,t +..+ ﬁn,axn,t) (3)

where x variables represent covariates and [ denotes the fitted parameters. The transformed scale
parameter is used to ensure the scale is positive. Stationary and nonstationary GEV parameters are
estimated using the method of maximum likelihood (MLE), a general and flexible parameter estimation
technique also used in similar studies (Katz et al. 2002; Towler et al. 2010; Condon et al. 2015).

The best nonstationary model (i.e. the best set of covariates) is selected by minimizing the Akaike
Information Criteria (AIC), which penalizes the negative maximized log-likelihood of a model for the
number of parameters used. AIC is defined by:

AIC = 2(NLLH) +2(k) (4)

where NLLH is the negative maximized log-likelihood obtained from MLE and k is the number of
independently adjusted model parameters (Akaike 1998). As an alternative to AIC, similar nonstationary
GEV studies have used the likelihood ratio test, a common statistical tool used to test the significance of
improvement in maximized log-likelihoods for nested models. However, with the number of models we
test for in this study, outcomes of the likelihood ratio test would lose their interpretability (Katz 2013)
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and some of the models we fit are not nested. For this reason, the likelihood ratio test is not used as the
primary selection criteria, though nonstationary models selected by AIC are still compared with the
stationary GEV distribution with the likelihood ratio test.

Exceedance probability levels for stationary GEV distributions are solved with equation (5):

Zp :#_Z[l _{—ln (1 —p)}_g] (3)

where z, is the streamflow with exceedance probability p and the parameters y, o, and € represent the
GEV distribution location, scale, and shape (with € # 0)(Coles 2001). Traditional stationary return level
calculations are not applicable in a nonstationary context, where exceedance periods change with each
new GEV distribution. We follow the methods explained in Salas and Obeysekera (2014) and Condon et
al. (2015) for nonstationary risk assessment. The above methods were largely implemented in R (R Core
Team 2016) with the package ‘extRemes’ (Gilleland and Katz 2016).

For comparison to the stationary and nonstationary GEV models, we also fit a stationary log-Pearson
type Il distribution to flow maxima. LPIIl distributions are fit using the method of moments following
USGS Bulletin #17B flood flow frequency guidelines (IACWD 1982). We include a visual process summary
of stationary and nonstationary GEV flood frequency analysis in pages i-iii in Appendix A.

Here we assess future flood risk using an ensemble of climate model outputs (further described in
subsequent sections). We first select a best nonstationary GEV distribution from a set of observed
covariates. We then simulate model behavior with an ensemble of climate models to evaluate the risk of
exceeding some site-specific critical flow within a selected design life. Steps for the analysis are:

1. A performance period of interest (e.g., 2040-2069), a project life (e.g., 20 years), and a critical flow are
selected for a site.

2. One climate model is selected at random from the ensemble of climate models. From the randomly
selected model, a block of covariate data is randomly selected within the period of interest and with a
length of the project life (e.g., a 20-year block of data is selected from 2040-2069 model data).

3. The best nonstationary GEV distribution is applied to the selected block of covariate data to
determine year-specific risks of exceeding the critical flow.

4. Following Salas and Obeysekera (2014), the total risk of exceeding the critical flow within the project
life is calculated (e.g., the risk of exceeding the critical flow over the 20-year project life).

5. Steps 2-4 represent one simulation. This process is repeated for each RCP scenario, multiple climate
models and the many blocks of covariate data with a length of the project life within the period of
interest. This provides a distribution of simulated probabilities of exceeding the critical flow over the
project life.

3. Study Sites and Data

Study Sites

Twelve USGS streamflow gauge sites of interest to the NPS are the focus of this study. Figure 1 provides
details regarding the sites and their locations. These sites have a long historical USGS gauging record and

4
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represent a diverse array of hydroclimates where impactful flooding events occurred in the past.
Further, these basins contain minimal hydrologic alteration, ensuring that human-caused land cover
change and river alterations (e.g., diversions, dams, and other structures) are not impacting these study
sites. Some recent notable and documented flood events for these basins include the January 1997
flood in Yosemite National Park, 2006 flooding in Mount Rainier National Park, and the 2017 flooding in
the Ozark National Scenic Riverways.

120 -100 80

Drainage Area

USGS Site USGS Site Description Unit {sq mi)
1 12082500 Nisqually River near National, WA Mount Rainier National Park 133
2 12040500 Queets River near Clearwater, WA Olympic National Park 445
3 11264500 Merced River at Happy Isles Bridge near ¥ osemite, CA Yosemite National Park 181
4 09405500 North Fork Virgin River near Springdale, UT ZionNational Park 344
5 06188000 Lamar River near Tower Ranger Station, YNP Yellowstone National Park 668
6 13011500 Pacific Creek at Moran, WY Grand Teton National Park 169
7 07056000 Buffalo River near 5t. Joe, AR Buffalo National River 829
8 07067000 Current River at Van Buren, MQ Ozark National Scenic Riverways 1,667
9 03409500 Clear Fork near Robbins, TN Big South Fork Mational River and Recreation Area 272
10 03460000 Cataloochee Creek near Cataloochee, NC Great Smoky Mountains National Park 49
11 01646500 Potomac River near Washington, D.C. Little Falls Pump Chesapeake & Ohio Canal National Historical Park 11,560
12 01440000 Flat Brook near Flathrookville, NJ Delaware Water Gap National Recreation Area 64

Figure 1 Location (top) and descriptions (below) of the 12 sites.

Drainage areas of the selected basins range from 49 to 11,560 square miles. The sites have varied
characteristics in terms of the timing of annual maxima, monthly precipitation, and streamflow
seasonality, as shown in Figure 2. Sites in the northwest (Nisqually R. and Queets R.) experience flood
events during the winter wet season. Western sites (Merced R., North Fork Virgin R., Lamar R., and
Pacific Cr.) exhibit delayed spring streamflow response to winter precipitation, suggesting snowmelt
driven river systems. Similarly, historical flooding events often occur in the spring for these sites,
suggesting snowmelt might be an important driving mechanism for flooding events at these sites. The
remaining eastern U.S. sites (Buffalo R., Current R., Clear Fork, Cataloochee Cr., Potomac R., and Flat
Brook), exhibit variable streamflow and precipitation characteristics, with the majority of floods
clustered over October-June.
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Figure 2 For each study site a bar plot for the count of annual peak mean daily flows occurring within each month (left axis),
boxplots of mean daily flows for each month (right axis), and a line plot of average monthly precipitation (far right axis) using
1951-2005 data.

The months we use for seasonal analysis at each site are based on the timing of annual peak flows
(water year), the distribution of daily flows for each month, and the monthly average precipitation.
Generally, the season we select for analysis includes consecutive months that experience the highest
frequency of annual maximum mean daily flows. We also assess monthly average precipitation and daily
streamflow patterns to assess potential dominant flood mechanisms (e.g., runoff and snowmelt flood
drivers), and we consider historical trends in the timing of observed seasonal peak flows. As further
described in the coming section, the season we select to investigate for each site also corresponds to
the seasonal covariates we use. To capture antecedent conditions that might influence flooding (e.g.,
snowpack), we also include covariates from the previous season.

Data

We use observed USGS gauge mean daily streamflow measurements available between 1951 and 2005
(water year) for analysis (U.S. Geological Survey 2016). Water years missing data within the season of
interest are excluded from the analysis.

We use 1951-2005 (water year) observed season average daily precipitation of each contributing basin
and season average daily hydrologic model generated flow as covariates — daily values of both are
provided by the U.S. Bureau of Reclamation. These are determined using Livneh et al. (2015) 1/16°
spatially gridded meteorological data derived from NOAA Cooperative Observer Network stations.
Hydrologic model flows provided by the U.S. Bureau of Reclamation are generated from the Variable
Infiltration Capacity model (VIC). VIC is a land-surface model that simulates spatially gridded, land-
atmosphere fluxes using the water and energy balance equations (Liang et al. 1994). Modeled flows are
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generated using VIC version 4.1.2h. This model requires daily precipitation, maximum and minimum air
temperature, and wind speed as input forcings required (Prata 1996; Kimball et al. 1997; Thornton and
Running 1999; Bohn et al. 2013). We use land-cover input data and calibrated parameters from Maurer
et al. (2002) and Livneh et al. (2013). Details on the VIC model are available in:
http://vic.readthedocs.io/en/master/. VIC river routing was performed at 1/16° grids using the routing
model from Lohmann et al. (1996).

The use of VIC model flows as a covariate in nonstationary flood frequency analysis is a novel
contribution of this research. We introduce this because we posit that VIC model flows better capture
the water and energy balance features of a basin as well as basin specific land-cover features compared
to average meteorological covariates (e.g., precipitation). We assess and summarize VIC model
performance compared to observed flows for each site and season in Table A-1; while the modeled
flows for several of the sites have strong biases, the correlations between VIC model flows and observed
streamflow for each site are strong. While the observed magnitude of daily flow (and potentially the
observed magnitude of the seasonal peak daily flow) might be poorly captured by VIC model
simulations, the seasonal average flow from the VIC model corresponded well with the observations and
thus, is a valuable covariate. Furthermore, we found a strong correlation between seasonal average
flows from the VIC model and the peak mean daily flow for the season of interest for each site (Table A-
2). This suggests the seasonal average flows contain information about the seasonal peak flow; also, the
VIC model flows capture the hydrologic processes in the basin providing complementary information.
With this motivation, we use the seasonal average flows from VIC model as one of the covariates in the
nonstationary GEV model.

We use an ensemble of projected 1951-2099 (water year) season average daily precipitation of each
contributing basin and season average daily VIC model generated flow as future covariates, which
enables 215t century projections of flood risk. Daily values of both are provided by the U.S. Bureau of
Reclamation. Projections are determined using the U.S. Bureau of Reclamation’s LOCA CMIP5 dataset.
This dataset contains 64 projections of daily, 1/16° gridded precipitation and maximum/minimum
temperature from an ensemble of 32 general circulation models, covering two different greenhouse gas
RCPs. We investigate RCP 8.5, a scenario representing high and increasing greenhouse gas levels into the
future, and RCP 4.5, a scenario representing a radiative forcing stabilization scenario (van Vuuren et al.
2011). LOCA CMIPS data is generated from bias corrected and downscaled coarse GCM data (with a
spatial resolution generally exceeding 1°) from the CMIP5 multi-model ensemble (Taylor et al. 2011).
Additional information on these processes can be found in Pierce et al. (2014, 2015) and Reclamation
(2016). This data is available from the downscaled CMIP3 and CMIP5 climate and hydrology projections
archive at https://gdo-dcp.uclinl.org/downscaled_cmip_projections/. Information on the CMIP5 project
can be found in Taylor et al. (2011). The GCMs we use through the LOCA CMIP5 dataset, the responsible
modeling groups, and an acknowledgement of the World Climate Research Program's Working Group on
Coupled Modelling are presented in Table A-3. The same methods as described earlier are used to
generate VIC model flows. However, because average daily wind speed is not available in the LOCA
CMIP5 dataset, historical Livneh et al. (2015) daily average wind speeds are used for the projected VIC
wind speed forcing.
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Overview

A process summary of this research appears in Figure 3. For each site of interest, we first fit a best
nonstationary GEV model to observed historical seasonal peak flows considering historical season
average and previous season average daily precipitation and hydrologic model generated flows as
potential covariates. For each site a set of models is generated by fitting nonstationary GEV distributions
to different combinations of these covariates, and, as mentioned, the best model (i.e., the best subset of
covariates) is selected using AIC. We then apply to the best model for each site the LOCA CMIP5
ensemble of future covariate projections through 2099 (water year). For each year of each GCM
ensemble member, the GEV distribution is projected using the projected covariate values. This provides
time-varying estimates of flood frequency distributions into the future. We also include traditional flood
frequency models (stationary GEV and LPIII distributions) in our analysis for comparison.

Fit best model (1951-2005) Project best model (1951-2099)

Fit a best nonstationary GEV

distribution to historical seasonal  —~— Apply GCM projected covariates

to the best model

floods
Potential 1951-2005 observed covariates: 1951-2099 LOCA CMIP5 covariates:
Precipitation - Precipitation
Hydrologic Model Generated Flows - Hydrologic Model Generated Flows

Figure 3 Process structure of this study.

4. Results

The best nonstationary GEV model was evaluated for each site using observed season and previous
season average precipitation and VIC model flow as potential covariates. Table 1 lists the covariates
selected in the best model for each park.
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Season of Previous Season

USGS Site USGS Site Description Unit Analysis Covariates GEV Location  GEV Scale  P-Value*
1 12082500  Nisqually River near National, WA Mount Rainier National Park Oct-Mar Oct-Dec vIC vIC 3.8E-08
2 12040500  Queets River near Clearwater, WA Olympic National Park Oct-Mar Oct-Dec viC 9.4E-05
3 11264500  Merced River at Happy Isles Bridge near Yosemite, CA Yosemnite National Park Apr-Jun Nov-Mar Pre_Pr+Pr <2.2E-16
4 09405500  North Fork Virgin River near Springdale, UT Zion National Park Apr-Jun Nov-Mar vIC VIC 1.6E-13
5 06188000  Lamar River near Tower Ranger Station, YNP Yellowstone National Park Apr-Jun Nov-Mar Pre_VIC+VIC Pre_VIC+VIC 8.8E-06
6 13011500  Pacific Creek at Moran, WY Grand Teton National Park Apr-Jun Nov-Mar Pre_Pr+ Pr 4.2E-10
7 07026000 Buffalo River near St. Joe, AR Buffalo National River Jan-May Qct-Dec Pr Pr 8.4E-10
8 07067000 Current River atVan Buren, MO Ozark National Scenic Riverways Feb-May Nov-lan Pre VIC+Pr Pre VIC+Pr 3.4E-11
9 03409500 Clear Fork near Robbins, TN Big South Fork National River and Rec. Area Dec-Mar Oct-Nov Pr 8.7E-07
10 03460000 Cataloochee Creek near Cataloochee, NC Great Smoky Mountains National Park Dec-Mar Oct-Nov vIC MIC 2.0E-05
1 01646500  Potomac River near Washington, D.C. Little Falls Pump Chesapeake & Ohio Canal National Hist. Park  Feb-May Nov-Jan viC vIC 8.7E-10
12 01440000 Flat Brook near Flatbrookville, NJ Delaware Water Gap National Rec. Area Feb-Apr Nov-lan Pre_VIC+VIC Pre_VIC+VIC 4.7E-09

Table 1 Best model parameters selected for the 12 sites. ‘Pr’ represents the seasonal average precipitation covariate and ‘VIC’
represents seasonal average flow covariate. A ‘Pre’ prefix indicates a previous season average covariate.

For all sites, nonstationary GEV distributions are selected over stationary GEV distributions based on AIC
scores. The p-values from the likelihood ratio test (compared to the stationary GEV distribution) are
also included, all of which are less than 0.05. VIC flows are selected as a covariate in the best model for
eight of the sites while precipitation is selected in the best model for five of the sites. Five models select
covariates from the previous season. The best models for eight of the sites have both a nonstationary
location and scale. The remaining best models only have a nonstationary location, these are the sites
with a blank in the ‘GEV Scale’ column of Table 1. Appendix B includes more detail on the site specific
fitted parameter values for each best model. For all but two sites, the location and/or scale of the
models shift upward with an increase in the selected covariate; higher previous season VIC flows for
USGS 06188000 (Lamar River) and 01440000 (Flat Brook) result in a decrease in the GEV location and/or
scale parameters. One possible explanation of this is that both of these sites experience winter
snowfall, so a higher historical previous season VIC flow for these sites might suggest earlier winter
snowmelt which will decrease the likelihood of obtaining high spring peak flows.

For each site, we use the best nonstationary GEV model (Table 1) and the ensemble of LOCA CMIP5
covariate projections to obtain an ensemble of 1% seasonal exceedance probability flows from 1951 to
2099 (water year). Because there are 64 model runs in the LOCA CMIP5 ensemble, 64 1% exceedance
probability flows are generated for every year (32 for RCP 4.5 and 32 for RCP 8.5). 1% exceedance
probability flows for each RCP scenario are grouped into approximately 30-year time periods from 1951
to 2099 (water year) and box plotted. The results for all sites appear in Figure 4. The 1% seasonal
exceedance probability flows generated from the stationary LPIIl distribution (blue line) and stationary
GEV distribution (red line) fit to historical observed floods are also included. Similar plots for the 2% and
0.2% exceedance probability flows for each site are available in Appendix B.
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Figure 4 Boxplots of 1% exceedance probability flows generated from the best GEV model and LOCA CMIP5 covariate projections
for each site. Stationary LPIII (blue line) and GEV (red line) 1% exceedance probability levels are also included.

For some sites (Nisqually R. and Queets R., for example), an increase in all quantiles of 1% exceedance
probability flows generated from the LOCA CMIP5 ensemble into the future is apparent (shown as an
upward shift in the boxplots over time). The opposite is apparent for USGS 09405500 (N. Fork Virgin R.),
which is showing decreasing trends. For many of the sites (Buffalo R. and Current R., for example), we
see an increase in the interquartile range and an increase in the difference between the 5th and 95th
percentiles of the ensemble 1% exceedance probability flows. For a site like USGS 03460000
(Cataloochee River), where the median remains relatively steady, the changes in the interquartile range
and 5th and 95th percentiles suggests an increase in variability in the magnitude of 1% exceedance
probability flows generated by the LOCA CMIP5 ensemble. We see an increase in the difference
between the 5th and 95th percentiles of the ensemble 1% exceedance probability flows for all but one
site, which we address further in the discussion.

RCP 4.5 and RCP 8.5 ensemble trends are generally in agreement with one another for each site, with
the RCP 8.5 ensemble typically having a stronger trend compared to the RCP 4.5 ensemble. When
comparing the nonstationary 1% exceedance probability flows to those generated from the stationary
LPIIl and GEV distributions, for USGS 11264500 (Merced River), for example, from 1951-2099 generally
between 75%-95% of the nonstationary 1% exceedance probability flows are below the stationary GEV
1% exceedance probability flow. This suggests that while the stationary GEV distribution might generally
have a higher estimate of the seasonal 1% exceedance probability level, there are years where projected
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covariate conditions would indicate a higher seasonal 1% exceedance probability level with a
nonstationary distribution. When calculating the risk of exceeding some threshold flow over a design
life, if the design life includes a seasonal period where exceedance probability levels are large, the
probability of exceeding that threshold flow will drastically increase. This will be captured in the
simulation results explained further in the results section.

Results for USGS 03409500 (Clear Fork River) suggests stationary GEV and LPIlI distributions estimate
significantly lower 1% exceedance probability levels compared to the nonstationary model. Results
specific to Clear Fork River in Appendix B show that nonstationary exceedance probability levels diverge
from those of the stationary GEV model for larger exceedance probabilities. There are several extended
periods of missing data for the Clear Fork River site, so limited data could be responsible for diverging
performance between the stationary and nonstationary models for more extreme flows. The stationary
and nonstationary GEV models generate very different 1% exceedance probability levels for USGS
09405500 (North Fork Virgin River). We found the stationary GEV distribution to poorly capture the
more extreme observed historical floods. We also see from the likelihood ratio test there is a great
degree of confidence (Table 1) that the log-likelihood of the nonstationary model is better than that of
the stationary GEV distribution for this site.

A spatial plot of the percent change of the median 1% exceedance probability flow generated from the
RCP 8.5 LOCA CMIP5 ensemble between the 1951-1979 and 2040-2069 periods for each site appears in
Figure 5. We see a decrease in the median CMIP 1% seasonal exceedance flows for our study sites in the
southwestern U.S. and an increase in the northern and eastern U.S.

-120 -100 -80

Figure 5 Percent change of RCP 8.5 2040-2069 median 1% seasonal exceedance flow compared to the 1951-1979 median 1%
exceedance seasonal flow generated from the best GEV model and LOCA CMIP5 covariate projections for each site.

Using the best model and the LOCA CMIP5 ensemble at each site, we simulate the probability of
exceeding a predetermined threshold flow over a specific design life. Here, we select a 20-year design
life using the site’s stationary GEV 1% exceedance probability flow as the threshold flow of interest. We
run a large number of simulations for each site and boxplot simulation results. We separate simulations
by the same 30-year periods and by RCP scenario as in Figure 4. Results are shared in Figure 6.
Stationary GEV (red line) and LPIII (blue line) risks are also included. Similar plots for site specific critical
flows are shared in Appendix B.
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Figure 6 Simulation results for the risk of exceeding the site’s stationary GEV 1% seasonal exceedance probability flow in a 20-
year project life using the best nonstationary GEV model and LOCA CMIP5 covariate projections for each site (boxplots).
Stationary LPIII (blue line) and GEV (red line) risks are also included.

While trends between Figure 4 and Figure 6 are similar, we generally see stronger trends in Figure 6.
This is reasonable — a stronger trend will be present when a slight change in seasonal risk is
compounded over 20 years. Further, as we saw in Figure 4, there are years within this LOCA CMIP5
ensemble where covariate conditions result in a much higher seasonal risk compared to the stationary
distribution. If a high-risk season is included in a simulation’s 20-year period, the risk of exceeding the
threshold flow over the 20-year period will significantly increase.

5. Discussion and Conclusion

In this paper we utilize the nonstationary generalized extreme value distribution and an ensemble of
climate models to project seasonal 215t century flood risk for twelve sites representing a diverse array of
hydroclimates across the U.S. National Park Service. Results generally project a decrease in seasonal
flood risk for sites in the southwestern U.S. and increases for sites in the eastern and northwestern U.S.
These seasonal results display similar patterns to those identified by Hirsch and Ryberg (2012), who
explored changes in historical flood magnitude under rising carbon dioxide levels at 200 sites across the
U.S. Thus, our projections suggest the trends identified over the time period of Hirsch and Ryberg’s
work (where the median record length was 1916-2008) are likely to continue. Further, for many sites
we find flows generated from a hydrologic model improved performance of nonstationary generalized
extreme value distributions when used as covariates.
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For long-term climate impact studies, two dominant sources of uncertainty arise when using an
ensemble of climate models — future scenario uncertainty and model uncertainty (Hawkins and Sutton
2009). Described further in Deser et al. (2012), future scenario uncertainty can refer to, for example,
uncertainty in greenhouse gas representative concentration pathway trajectories. Our results present
only RCP 4.5 and RCP 8.5 scenarios, which typically display similar trends with stronger shifts in flood risk
associated with RCP 8.5 trajectories. Model uncertainty arises from the fact that different climate
models, given the same forcing, have different responses. As mentioned, for many of our sites, we see
increases in the interquartile range and 5th-95th percentile range in our ensemble results presented in
Figure 4 and Figure 6. This increase could relate to model uncertainty — climate models with different
physical and numerical parameterizations can have diverging responses to long-term projections of
input forcings. Our use of 32 GCMs, in part, characterizes this model uncertainty, and one common
technique to combine results from climate ensembles involves taking a simple or weighted average of
ensemble results (Tebaldi and Knutti 2007). The median and interquartile range in the boxplots
presented in Figure 4 and Figure 6 represent this central tendency of the ensemble results, noting that
we utilize the same 32 GCMs for each site and we do not assess individual GCM model performance for
each site.

Our selection of covariates for the best model at each site assumes these general, seasonal average
covariates represent the dominant driving mechanisms for seasonal peak flows; shifts in covariates
suggest a shift in flood risk due to these dominant flood mechanisms. However, multiple flood
generating mechanisms can be present (Berghuijs et al. 2016) and dominant flood mechanisms might
exhibit long-term changes (e.g., transitions from snowmelt to rainfall-runoff) (Knowles et al. 2006; Das
et al. 2013). For example, covariates like precipitation would not capture flood behavior shifts that arise
from more precipitation falling as rainfall (as opposed to snowfall) in the future. This could be an
advantage of using VIC model-generated flow as a covariate as we did here - shifting flood generating
mechanism behavior for a basin can be better captured because VIC accounts for water and energy
balance aspects of a system. In our study, VIC model generated flows are more frequently evident as a
best model covariate over precipitation. Shifting dominant flood mechanisms might also shift the timing
of peak floods out of the seasons studied in this paper, which cannot be accounted for in our covariates.
Additionally, it is important to note the biases that remain in these VIC models (Table A-1) and in the
LOCA CMIP5 dataset following bias correction and downscaling processes (Pierce et al. 2014, 2015).

We acknowledge this study does not assess nonstationary GEV model parameter uncertainties.
Assessing standard errors from maximum likelihood estimates can provide more information on best
model performance and exploring this method in a Bayesian framework could also be valuable for
assessing uncertainties (Katz et al. 2002; Renard et al. 2013; Cheng et al. 2014; Bracken et al. 2018).
Further, investigating the sensitivity of exceedance probability levels generated from the set of models
we fit for each site (i.e., the models with different combinations of covariates) could also provide insight
into model performance and the relationship between covariates and flood risk that these models
capture.

Beyond investigating the uncertainties described above, future studies could investigate other flood
characteristics like duration. Further, performing this analysis on each season of a year could provide
more information on annual peak flood behavior for a particular site.

Overall our projected shifts in future flood behavior can help NPS managers assess the need to develop
climate change informed flood risk management plans at different park units. This can improve risk
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397 mitigation for cultural and natural resources, inform site selection and design for roads, trails, and other
398 infrastructure, and help managers proactively plan for trail and facility closures to ensure visitor safety.
399 Due to the sensitive nature of flood planning for certain projects, we suggest utilizing these results,
400 along with an in-depth understanding of specific basins and other industry accepted flood hazard
401  evaluation techniques, to assess the factor of safety required for flood planning under a changing
402  climate.
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Appendix A

The following pages i-iii include a process summary of the stationary and nonstationary flood frequency analysis used in this
paper. The process in these pages is demonstrated in an annual timeframe, though it is just as applicable to a seasonal
timeframe.

Stationary Flood Risk

1. Select Annual Maxima ,,B'“k maxima
; ; ; ; ; : : The set of annual
5 5 ; maximum flows (i.e., the
block maxima) is
determined
5 | ML | |
i ; ; :
Date —_—
Water Year, t;

2. Fit a GEV Distribution to Block Maxima

A stationary generalized extreme value {GEV) distribution is fit to the bock maxima

F(x) = exp {— [1 + s(x%““)]_?l}
|

The stationary GEV distribution is
defined by 3 parameters:

GEV defined by
parameters
(1, 0,€)

=
location (p), scale (o), and shape (g) [
a
We estimate these parameters using Histogram of
the method of maximum likelihood , block maxima
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: Annual Peak Flow
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3. Calculate Risk of Flood

The fit distribution is used to assess the risk of exceeding a flow

R=1-(1-p)"

Flow threshold I I
Risk of flood Probability of
. / occurringin flow above
Exceedance nyears flood threshold
probability (p) occurring in any
year
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Non-Stationary Flood Risk

1. Select Annual Maxima

The set of annual maximum flows (i.e., the block maxima) is

determined

Flow

Block maxima

L4

Date

Water Year, t;
2. Fit a Non-Stationary GEV Distribution to Block Maxima

A non-stationary generalized extreme value (GEV) distribution is fit to the bock maxima.

A non-stationary GEV distribution allows the location (p) and scale (o) parameters to vary
with meteorological variables. In this case, the location and scale vary with annual
precipitation. However, other climate covariates are often used.

The non-stationary GEV
distribution can represent
many different GEV
distributions

Potential future GEV
based on future
precipitation

GEVE, = Pry

>
-1 A
— t &
F(x)=e:t‘p{—[1+ew } S
a(t) a
u(t) = Bo+ B1Pr, The location and scale
o(t) = ay+ a,Pr, 4= shift as a function of
_ tant precipitation. This GEV
€ = constan distribution is defined
by 5 parameters
(Bﬂr Bl.r g, dq, E)
BO Bl a0 al € NIlh  AIC
13242 115.8 6.8 0.1 0.2 463.2  936.5

LR Test Against Stationary GEV Model: p-value=0.02

Annual Peak Flow

We solve for the 5 parameters using

= the method of maximum likelihood
and assess the model fit using AIC and
a likelihood ratio test.



3. Determine the GEV Distribution for Every Time Period

Using the annual precipitation covariate and the fit non-stationary GEV model, alocation
and scale is determined for each year

71 N\ —

ult=1)= Bo+ BPr;, u(t=2)= Bo+PfPr, pt=3)= Bo+ f,Pr gy HIE=4)= Bo+ P1Prey
a(t=1)= ay+a,Pr_y; o(t=2)= ay +a,Pr_, o(t=3)= ayg+aPr_g 0(t=4) = ag+aPr,

Precipitation

t=1 t=2 t=3 t=4
z z z z
@ @ @ 7]
c c c c
a a a a
Annual Peak Flow Annual Peak Flow Annual Peak Flow Annual Peak Flow

4. Calculate Risk by Combining GEVs Calculated for Each Step

The fit distribution is used to assess the risk of exceeding a flow. Because the non-stationary
GEV model defines a different location and scale for each year {depending on annual
precipitation), the risk of exceeding a flow changes between years.

Density

t=1 = t=3 t=4
z 2 2
p,=P(flow>x) 2 &2 @
Q [1] Q
o (a] a
1 l 1 P2 I p, 1 p,
1 4 Y | o |
Annual Peak Flow Annual Peak Flow Annual Peak Flow Annual Peak Flow

In this case, the risk calculated is specific to years t=1 to
R=1- H?:l(l - pt) (s t=4. Different GEVs, and therefare a different risk, will
occur in years t=5 to t=8, for example.



VIC Model Skill Scores

USGS Site USGS Site Description Season NSE COR PBIAS (%)
Oct-M -0.19 0.67 -42.0
1 12082500  Nisqually River near National, WA ce-Mar
Oct-Dec -0.05 0.79 -45.9
2 12040500 Queets River near Clearwater, WA Oct-Mar 0.62 0.92 -23.9
Oct-Dec 0.65 0.93 -27.7
Apr-J -0.42 0.78 19.3
3 11264500 Merced River at Happy Isles Bridge near Yosemite, CA pr-un
Nov-Mar -0.05 0.69 -72.1
4 09405500 North Fork Virgin River near Springdale, UT Apr-Jun 0.34 0.79 .7
Nov-Mar -1.30 0.66 -11.8
Apr-J -0.46 0.77 -69.4
5 06188000 Lamar River near Tower Ranger Station, YNP pr-un
Nov-Mar -1.20 0.53 -4.1
6 13011500 Pacific Creek at Moran, WY Apr-Jun 026 0.82 4E8
Nov-Mar -0.16 0.61 -19.4
Jan-M 0.77 0.89 -14.1
7 07056000  Buffalo River near St. Joe, AR an-viay
Oct-Dec 0.87 0.95 21.2
8 07067000 Current River at Van Buren, MO Feb-May 055 0.82 1
Nov-Jan 0.55 0.92 20.6
9 03409500  Clear Fork near Robbins, TN Dec-Mar 053  &82 o4
Oct-Nov 0.37 0.85 -28.5
10 03460000 Cataloochee Creek near Cataloochee, NC Dec-Mar WA R.E 198
Oct-Nov 0.60 0.93 -6.0
11 01646500 Potomac River near Washington, D.C. Little Falls Pump Feb-May 0.74 oS 6.0
Nov-Jan 0.59 0.84 27.3
12 01440000 Flat Brook near Flatbrookville, NJ Febging 0.43 078 -20.6
Nov-Jan 0.64 0.82 -10.2

Table A-1 Monthly VIC model flow performance metrics over seasons of interest (using observed historical forcings from 1951-
2005 water years) for each study site. Metrics include the Nash-Sutcliffe efficiency, Pearson correlation, and percent bias.

USGS Site USGS Site Description Season COR
Oct-Mar 0.68
Oct-Dec 0.59
Oct-Mar 0.62

1 12082500 Nisqually River near National, WA

2 12040500 Queets River near Clearwater, WA

Oct-Dec 0.50

Apr-J 0.72
3 11264500 Merced River at Happy Isles Bridge near Yosemite, CA pr-2un

Nov-Mar 0.14

Apr-J 0.80
4 09405500 North Fork Virgin River near Springdale, UT preaun

Nov-Mar 0.55

Apr-J 0.52
5 06188000 Lamar River near Tower Ranger Station, YNP pr=tun

Nov-Mar -0.09

Apr-Jun 0.69

6 13011500 Pacific Creek at Moran, WY
Nov-Mar 0.12

Jan-May 0.61

7 07056000 Buffalo River near St. Joe, AR

Oct-Dec -0.05

Feb-M 0.60
8 07067000 Current River at Van Buren, MO N ay

Nov-Jan 0.26
9 03409500  Clear Fork near Robbins, TN Dec-Mar 059

Oct-Nov -0.03

Dec-Mar 0.50
Oct-Nov 0.32
Feb-May 0.70
Nov-Jan 0.30
Feb-Apr 0.65
Nov-Jan 0.03

10 03460000 Cataloochee Creek near Cataloochee, NC

11 01646500 Potomac River near Washington, D.C. Little Falls Pump

12 01440000 Flat Brook near Flatbrookville, NJ

Table A-2 Correlations between season of interest and previous season of interest average mean daily VIC model flow and the
site’s season of interest peak mean daily flow. For each site, the top set of months correspond to the season of interest and the
bottom set of months corresponding to the previous season of interest.



Modeling Center (or Group) Institute ID Model Name

Commonwealth Scientificand Industrial Research Organization ACCESS1.0
CSIRO) and Bureau of Meteorology (BOM), Australia CSIRO-BOM
( ! ACCESS1.3
BCC-C5M1.1
Beijing Climate Center, China Meteorological Administration BCC
BCC-CSML.1{m)

CanESM2

CESM1(BGC)
......................................................................... CESML(CAMS)

CMCC-CM
cMcc

Centro Euro-Mediterraneo per | Cambiamenti Climati
Centre National de Recherches Météorologiques / Centre

Européen de Recherche et Formation Avancée en Calcul CNRM-CERFACS CNRM-CM5
Scientifigue

Commonwealth Scientificand Industrial Research Organization in

collaboration with Queensland Climate Change Centre of CSIRO-QCCCE CSIRO-Mk3.6.0
Excellence

EC-EARTH consortium EC-EARTH EC-EARTH
LASG, Institute of Atmospheric Physics, Chinese Academy of
Sciences and CESS, Tsinghua University LASG-CH FGOALS-g2

GFDL-CM3

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2G
......................................................................................................................................... GFDL-ESM2M .
. . GISS-E2-H

NASA Goddard Institute for Space Studies MNASA GISS
............................................................................................................................................ GISS-E2-R ..
Nati | Institute of Met: logical R h/K

ational Institute of Meteorological Researc /Korea NIMR/KMA HadGEM2-AC
Meteorological Administration

HadGEM2-CC

Met Office Hadley Centre (additional HadGEM2-ES realizations MOHC (additional
contributed by Instituto Nacional de Pesquisas Espaciais) realizations by INPE)

HadGEM2-ES

NM-CM4

r Numerical Mathematics

IPSL-CM5A-LR
........................................................................................................................................ IPSL-CMSAMR .
Japan Agency for Marine-Earth Science and Technology, MIROC-ESM
Atmosphere and Ocean Research Institute (The University of MIROC
Tokyo), and National Institute for Environmental Studies

MIROC-ESM-CHEM

Atmosphere and Ocean Research Institute (The University of
Tokyao), National Institutefor Environmental Studies, and Japan MIROC MIROCS
Agency for Marine-Earth Science and Technology

Max-Planck-Institut fir Meteorologie (Max Planck Institute for MPI-M MPI-ESM-MR
Meteorology) ; MPI-ESM-LR
MeteorologicalResearch Institute L MBI MRICGCM3 ...
Norwegian ClimateCentre NCC NorESM1-M

Table A-3 The 32 CMIP5 models in the LOCA CMIP5 ensemble. We acknowledge the World Climate Research Program’s Working
Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and
making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and
Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global
Organization for Earth System Science Portals.



Appendix B

Seasonal Flow Analysis

The following pages contain seasonal flood frequency results for all 12 sites. Sites and the season of interest

are shared in the table below.

Season of Previous Season

USGS Site USGS Site Description Unit Analysis Covariates
1 12082500  Nisqually River near National, WA Mount Rainier National Park Oct-Mar Oct-Dec
2 12040500  Queets River near Clearwater, WA Olympic National Park Oct-Mar Oct-Dec
3 11264500  Merced River at Happy Isles Bridge near Yosemite, CA Yosemite National Park Apr-Jun Nov-Mar
4 09405500  North Fork Virgin River near Springdale, UT Zion National Park Apr-Jun Nov-Mar
5 06188000  Lamar River near Tower Ranger Station, YNP Yellowstone National Park Apr-Jun Nov-Mar
6 13011500 Pacific Creek at Moran, WY Grand Teton National Park Apr-Jun Nov-Mar
7 07056000 Buffalo River near St. Joe, AR Buffalo National River Jan-May Qct-Dec
8 07067000  Current River at Van Buren, MO Ozark National Scenic Riverways Feb-May Nov-Jan
9 03409500 Clear Fork near Robbins, TN Big South Fork National River and Rec. Area Dec-Mar Oct-Nov
10 03460000 Cataloochee Creek near Cataloochee, NC Great Smoky Mountains National Park Dec-Mar Oct-Nov
1 01646500  Potomac River near Washington, D.C. Little Falls Purnp Chesapeake & Ohio Canal National Hist. Park  Feb-May Nov-Jan
12 01440000  Flat Brook near Flatbrookville, NJ Delaware Water Gap National Rec. Area Feb-Apr Nov-Jan




Seasonal Extreme Flow Analysis
Nisqually River near National, WA (USGS 12082500)

Mount Rainier National Park

Historical Return Levels
Best Nonstationary GEV Model
B corved Posk Hons Location ™ VIC, Scale ~ VIC
-~ Nonswationary 5% seasonal Exceedance Level Location Scale
~ - Nonstationary 1% Seazonal Excesdance Leve! Mo ™ ¢° 4’1 Shape Nilh AIC BIC
Stationary 5% Seasonal Excesdance Level
e 035 1033 -0.46 1.998 -0.05 109.7 229.5 239.5
LR Test Against Stationary GEV Model: p-value=3.842e-08
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8
‘:_.;I;" e
(|

\' I 4 . "‘ " ’\ . .
o Y ” (7Y ' \,.\‘J ¥ Y ,,\ \ N ALY '.'/ Table 1: Fitted parameter values and skilf scores
2 1 u .
for the best nonstationary GEV model.
o= v
1950 1960 1970 |§kﬂ 1950 ZGOD
Year

Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.
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Figure 3 (above): Boxplots of LOCA CMIP5
ensemble covariates. Results cover two RCP

Figure 2 (above): Stationary GEV and LPIll return
levels (solid lines) and boxplots of nonstationary E3 a5 — Lpu siatonary Seasonal Exceedance Level scenarios.
return levels generated from the LOCA CMIP5 B3 85— GEvsutonary Sessons picesdance Level

ensemble of covariates. Results cover two RCP

scenarios.
Return Flow (1000 CFS)
Stationary Models Nonstationary GEV Model - GCM Ensemble Percentile

Exceedance  GEV LPIN RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median  75th 25th Median  75th 25th Median 75th
20% 70 72 4.5 5.3 7.0 8.9 6.6 8.6 11.6 6.9 9.5 125
8.5 5.4 7.0 8.9 7.1 9.4 12.3 7.7 10.3 14.2
10% a7 2.9 4.5 6.2 8.1 10.3 7.6 10.0 1386 8.0 11.0 147
8.5 6.3 8.2 10.3 8.2 10.9 14.4 89 12.0 16.7
4.5 7.3 9.5 12.0 8.9 11.6 15.9 9.4 12.8 17.2
4% L0 1.0 8.5 7.3 9.5 12.0 9.5 12.7 16.9 10.4 14.1 19.7
4.5 8.8 11.4 14.4 10.7 13.9 19.2 112 15.4 20.8
% 14.6 14.2 8.5 8.8 11.4 14.4 114 15.2 20.4 125 16.9 239

Table 2 (above): Stationary GEV and LPill return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return level from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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simulations from the LOCA
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covariates (boxplots).
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Historical Return Levels

Seasonal Extreme Flow Analysis
Queets River near Clearwater, WA (USGS 12040500)

Olympic National Park

Chsenved Fesk

80~

Peak Flow (1000 CFS)

40~

1890
Year

1980

2000

Stationary 5% Seasonsl Exceedance Level
Stationary 1% Seasonal Excesdance Level

Flows

59 Seasonal Exceedance Level

1% Seasons xcesdance Level

Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.

2% Exceedance Flows

Return Flove (1000 CFS)
Return Flove (1000 CFS)

Year

Figure 2 (above): Stationary GEV and LPIll return
levels (solid lines) and boxplots of nonstationary
return levels generated from the LOCA CMIP5
ensemble of covariates. Results cover two RCP
scenarios.

1% Exceedance Flows

Retwrn Flow (1000 CFS)

Best Nonstationary GEV Model

Location™ VIC

Location
Ho Wi Scale Shape NIh _ AIC  BIC
1185 7.04 1195 -0.15 1233 2545 2603

2% Exceedance Flows

Rer
ESas — Lo swonary Sessonal exceedince Level
BS 55 —— GEV Stationary Seasonal Exceedance Level

Return Flow (1000 CFS)

LR Test Against Stationary GEV Model: p-value=9.403e-05

Table 1: Fitted parameter values and skill scores
for the best nonstationary GEV model.

CMIP Oct-Mar Average Daily VIC Flow

RCF

il .

18511970 19802000 20102030 20402083 20702099

Average Flow (1000 CFS)

Figure 3 (above): Boxplots of LOCA CMIP5
ensemble covariates. Results cover two RCP
scenarios.

Stationary Models Nonstationary GEV Model - GCM Percentile
Exceedance  GEV LPIN RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median 75th 25th Median  75th 25th Median  75th
4.5 60.7 66.6 727 63.8 70.4 77.6 65.7 72.7 80.0
20% 67.4 67.7 8.5 60.8 66.8 727 64.6 71.9 78.7 66.4 74.0 82.2
10% 751 76.8 4.5 67.5 73.4 794 70.5 77.1 84.3 725 79.5 86.8
8.5 67.5 73.5 79.4 71.4 78.6 85.4 73.1 80.7 889
a5 231 37.0 4.5 74.9 80.8 86.9 77.9 84.6 91.8 79.9 86.9 94.2
8.5 74.9 81.0 86.9 78.8 86.1 92.9 80.6 88.2 96.4
4.5 84.1 90.0 96.1 87.1 93.8 101.0 80.1 96.1 103.4
% 921 1000 8.5 84.1 90.2 96.1 88.0 95.3 102.1 89.8 97.4 105.6

Table 2 (above): Stationary GEV and LPIil return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return fevel from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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Figure 4 (left): Risk of
exceeding critical flows
within design life for
stationary GEV and LPIII
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CMIP5 ensemble of

covariates (boxplots).
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Peak Flow (1000 CFS)

Return Flow (1000 GFS)

Seasonal Extreme Flow Analysis

Merced River at Happy Isles Bridge near Yosemite, CA (USGS 11264500)

Historical Return Levels

Yosemite National Park

Best Nonstationary GEV Model

— Observed Fezk Fows Location™ Pre_Pr + Pr

~~ Monstationary 5% Sezsonal Excesdance Level Location
- ATV 1% SeSonal DeseiAE e, My W2 Scale Shape NIlh AIC  BIC
4 —— stationary 5% Seasonal Excesdance Level
. Stationary 1% Seasonal Excesdance Level 011 0.24 0.29 037 010 350 799 89.9
LR Test Against Stationary GEV Model: p-value < 2.2e-16
2l Table 1: Fitted parameter values and skill scores
for the best nonstationary GEV model.
1850 1960 1970 1980 1990 2000
Year
Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data. CMIP Nov-Mar Average Daily Precipitation
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Figure 2 (above): Stationary GEV and LPIll return . 1 i i i i
levels (solid lines) and boxplots of nonstationary E5as — LPlllSbnary Sessonal Bxcesdance Leve! 19511976 1980-2008 2010-2030 2040-2089 2070-2099
return levels generated from the LOCA CMIP5 B85 — GEVsubonary sesseral cesdince Lavel §
ensemble of covariates. Results cover two RCP Figure 3 (above): Boxplots of LOCA CMIPS
scenarios. ensem.‘h,’e covariates. Results cover two RCP
scenarios.
Return Flow (1000 CFS)
Stati y Models Nonstationary GEV Model - GCM Ensemble Percentile
Exceedance GEV LPIN RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median 75th 25th Median  75th 25th Median  75th
20% 32 33 4.5 23 2.7 3.2 2.2 26 3.2 2.3 2.7 3.2
8.5 2.3 2.7 3.2 2.2 2.7 3.2 2.2 2.7 3.2
10% 38 13 4.5 26 3.0 35 2.5 30 3.6 2.6 3.0 36
8.5 26 3.0 35 2.5 30 35 2.5 3.0 36
4.5 31 25 4.0 3.0 34 4.0 3.1 3.5 4.0
4% 45 46 85 31 35 4.0 3.0 35 4.0 29 3.5 4.0
4.5 38 4.3 4.7 3.7 42 4.8 3.8 4.2 4.8
1% 55 57
8.5 38 4.3 47 3.7 4.2 4.8 3.7 4.2 4.8

Table 2 (above): Stationary GEV and LPIil return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return fevel from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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Figure 4 (left): Risk of
exceeding critical flows
within design life for
stationary GEV and LPIII
models (solid lines) and best
nonstationary GEV model
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Seasonal Extreme Flow Analysis

North Fork Virgin River near Springdale, UT (USGS 09405500)

Zion National Park
Historical Return Levels

j
i
: = Observed Peak Flows

H 1 -~ Monstationsry 5% Sezzonsl Enceedance Level
7
i
!
i

-~ MNonstationary 1% Seasonsl Exceedance Level

-

| —— Stationary S% Season:l Ecesgance Level
it —— stationary ¥ seasons] Excesfance Level

~

Peak Flaw {1000 GFS)

1950 1960 1970 1980 1990 2000
Year

Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.

Best Nonstationary GEV Model
Location ™ VIC, Scale ~ VIC

Location Scale
Ho B b0 &1 Shape NIIh _AIC  BIC
0.13 125 -2.36 1.740 0.27 -13.7 -174 -73

LR Test Against Stationary GEV Model: p-value=1.621e-13

Table 1: Fitted parameter values and skill scores
for the best nonstationary GEV model.

2% Exceedance Flows 1% Exceedance Flows .2% Exceedance Flows CMIP Apr-Jun Average Daily VIC Flow
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Figure 2 (above): Stationary GEV and LPlil return . ensemble covariates. Results cover two RCP
levels (solid lines) and boxplots of nonstationary E3as — P sttonary Seasonsl Excesdance Level ecenah
return levels generated from the LOCA CMIP5 Edes — gEVsmtonary Seasens Besstance Lavel
ensemble of covariates. Results cover two RCP
scenarios.
Return Flow (1000 CFS)
y Models Nc ionary GEV Model - GCM Er ble Percentile
Exceedance  GEV LPII RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median 75Sth 25th Median 75th 25th Median  75th
45 04 0.5 0.7 0.4 0.4 0.6 0.4 0.4 0.6
20% 07 08 85 04 0.5 0.7 0.4 04 0.6 0.3 0.4 0.5
10% 12 11 45 0.5 0.6 0.9 0.5 0.6 0.7 0.5 0.6 0.7
85 0.5 0.6 0.9 0.5 0.5 0.7 0.5 0.5 0.6
2% 20 17 45 0.7 0.9 1.2 0.7 0.8 1.0 0.7 0.8 1.0
85 0.7 0.9 1.2 0.7 0.8 1.0 0.7 0.7 0.8
45 11 =) 1.7 1.1 1.2 15 1.1 1.2 1.5
1% 4.4 2.9
85 1.1 1.3 1.7 1.1 1.2 15 1.1 1.1 1.3
Table 2 (above): Stationary GEV and LPIll return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return level from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
Risk of Excaeding 4000 CFS in 20-year Design Life Risk of Exceeding 5000 CFS in 20-year Design Life Risk of Exceeding $100 CFS in 20-year Dessign s Figure 4 (left): Risk of
- Crew Monitors Bank Armoring - - Observed Damage to Watchman Campground Levees - - Levees Topped at Walchman Campground - exceeding critical flows
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;I 0 nonstationary GEV model

simulations from the LOCA
CMIP5 ensemble of
covariates (boxplots).
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Peak Flow (1000 CFS)

Return Flove (1000 CFS)

Historical Return Levels

Seasonal Extreme Flow Analysis
Lamar River near Tower Ranger Station, YNP (USGS 06188000)
Yellowstone National Park
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Location ™ Pre_VIC+VIC, Scale ~ Pre_VIC+VIC
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Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.

2% Exceedance Flows

&

Return Flove (1000 CFS)

Year

1% Exceedance Flows

Figure 2 (above): Stationary GEV and LPIll return

levels (solid lines) and boxplots of nonstationary

return levels generated from the LOCA CMIP5
ensemble of covariates. Results cover two RCP

scenarios.

Exceedance
Probability

20%

10%

4%

1%

Return Flawe (1000 CFS)

7.04 -19.72 3.76 -0.06 -7.95 1.52 -0.20 62.1 138.2 149.3

LR Test Against Stationary GEV Model: p-value=8.761e-06

Table 1: Fitted parameter values and skill scores
for the best nonstationary GEV model.
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Figure 3 (above): Boxplots of LOCA CMIP5
ensemble covariates. Results cover two RCP

<renarinc

Stati y Models Nonstationary GEV Model - GCM Ensemble Percentile

GEV LPIN RCP 1980-2009 2040-2069 2070-2099
25th Median 75th 25th Median  75th 25th Median  75th
10.0 1041 4.5 8.7 9.9 11.2 9.6 11.0 13.1 9.6 11.3 132
85 87 9.8 11.2 9.7 11.1 13.3 9.1 10.9 131
11.4 115 4.5 9.2 10.6 12.2 10.3 12.0 14.4 10.3 12.3 146
8.5 93 10.5 12.2 10.3 121 14.8 9.8 11.8 145
13.3 133 4.5 9.8 11.4 13.2 11.0 13.0 15.9 11.0 13.4 16.1
8.5 929 11.3 13.2 111 131 16.3 10.4 12.8 16.0
16.2 163 4.5 10.5 12.3 14.4 119 142 17.7 11.9 14.6 179
85 10.6 12.2 14.4 12.0 14.3 18.1 11.2 13.9 17.7

Table 2 (above): Stationary GEV and LPIil return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return fevel from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.

Risk of Exceeding 14700 CFS in 20-year Design Life
- Stationary GEV 2% Exceedance Flow -

i i w00
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Figure 4 (left): Risk of
exceeding critical flows
within design life for
stationary GEV and LPIII
models (solid lines) and best
nonstationary GEV model

simulations from the LOCA
CMIP5 ensemble of
covariates (boxplots).
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Seasonal Extreme Flow Analysis
Pacific Creek at Moran, WY (USGS 13011500)
Grand Teton National Park

Historical Return Levels
Best Nonstationary GEV Model

o ’,’;\ . erved peak e Location™ Pre_Pr + Pr
& , x f!‘.“ A -~ Nonstationary 5% Sezsonal Exceedance Level Location
5 i L -~ Nonsorary ssessns bessdene @ p, Scale Shape NIlh AIC  BIC
g ) — stationary s¥ Seasonal Excesdance Level
s i L rasonary 1% sommen enctonen e _0:17_0.52__0.29 038 -0.004 31.9 73.8 835
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Figure 1 fabove): A comparison of historical 5% and 1% stationary GEV and
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Return Flow (1000 CFS)
Stationary Models Nonstationary GEV Model - GCM Percentile
Exceedance  GEV LPII RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median  75th 25th Median  75th 25th Median 75th
4.5 2.5 2.7 3.0 2.5 2.8 3.1 2.5 2.8 3.2
20% 29 29 85 25 2.7 3.0 25 28 3.2 2.6 29 33
10% 33 33 45 2.8 3.0 33 2.8 31 3.4 2.8 31 35
8.5 2.7 3.0 3.3 2.8 3.1 3.5 2.9 3.2 3.6
4% 3.7 3.7 45 31 3.4 3.7 31 34 3.8 3.2 3.5 3.8
8.5 3.1 3.4 3.6 3.2 3.5 3.8 3.2 3.6 3.9
45 3.6 3.9 4.2 3.7 4.0 43 3.7 4.0 4.3
1% 4.2 4.3
8.5 3.6 3.9 4.2 3.7 4.0 44 3.8 4.1 4.5
Table 2 (above): Stationary GEV and LPiil return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return level from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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Seasonal Extreme Flow Analysis
Buffalo River near St. Joe, AR (USGS 07056000)
Buffalo National River

Historical Return Levels

Best Nonstationary GEV Model
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Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.
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Figure 2 (above): Stationary GEV and LPHi return e ensemble covariates. Results cover two RCP
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ensemble of covariates. Results cover two RCP

scenarios.
Return Flow (1000 CFS)
Stationary Models Nonstationary GEV Model - GCM Ensemble Percentile
Exceedance  GEV LPII RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median  75th 25th Median 75th 25th Median  75th
4.5 221 29.0 36.9 233 31.0 40.9 22.9 30.9 39.6
20% 328 34.0 85 223 29.2 374 235 317 40.1 245 32.6 423
10% 429 a3 4.5 28.7 371 46.8 301 39.5 52.0 29.6 39.4 50.4
8.5 28.9 37.2 47.6 303 40.4 51.0 315 41.6 53.8
1% 575 576 4.5 39.1 49.9 62.7 40.9 53.1 69.6 40.3 52.9 67.4
8.5 30.4 50.1 63.7 41.2 54.2 68.3 42.7 55.7 72.0
4.5 60.4 75.9 95.0 63.0 80.6 105.4 62.0 80.3 102.1
% 83.4 7.3 8.5 60.8 76.2 96.5 63.4 82.3 103.4 65.5 84.6 109.1

Table 2 (above): Stationary GEV and LPIIi return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return level from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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Figure 4 (left): Risk of
exceeding critical flows
within design life for
stationary GEV and LPII
models (solid lines) and best
nonstationary GEV model
simulations from the LOCA
CMIP5 ensemble of
covariates (boxplots).
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Seasonal Extreme Flow Analysis
Current River at Van Buren, MO (USGS 07067000)
Ozark National Scenic Riverways

Historical Return Levels

| Best Nonstationary GEV Model
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Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and

best nonstationary GEV return levels. Gaps represent missing data.
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Return Flow (1000 CFS)
Stationary Models Nc ionary GEV Model - GCM Ensemble Percentile
Exceedance GEV LPII RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median  75th 25th Median  75th 25th Median  75th
45 17.8 253 34.2 194 287 39.6 19.2 28.2 40.1
20% 29.3 30.3
85 18.0 25.2 34.2 201 20.4 41.3 211 30.8 438
10% 39.0 203 45 226 31.8 431 246 36.3 50.4 24.5 35.4 50.8
85 227 31.7 43.1 255 36.9 52.2 26.8 38.7 55.7
45 30.4 421 57.2 331 43.4 67.4 329 47.2 68.0
4% 5.5 53.8 85 30.5 41.9 57.3 339 49.0 70.1 36.0 51.5 75.0
45 46.3 63.5 86.2 504 72.8 102.6 49.7 70.9 102.9
1% 80.2 75.1
85 46.8 63.0 86.4 514 73.9 106.9 54.6 77.4 113.7

Table 2 (above): Stationary GEV and LPIl return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return level from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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Seasonal Extreme Flow Analysis
Clear Fork near Robbins, TN (USGS 03409500)

Big South Fork National River and Recreation Area

Historical Return Levels
Best Nonstationary GEV Model
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Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.
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return levels generated from the LOCA CMIP5 S 65— SEVSuenary Sessoral bxcesdance Level
ensemble of covariates. Results cover two RCP
scenarios.
Return Flow (1000 CFS)
Stationary Models Nonstationary GEV Model - GCM Percentile
Exceedance  GEV LPil RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median  75th 25th Median  75th 25th Median  75th
4.5 121 13.4 149 121 13.8 15.7 123 14.0 159
20% 141 14.4
8.5 12.2 13.4 149 12.4 14.0 15.8 126 14.3 16.2
10% 17.2 175 4.5 15.4 16.8 18.2 15.5 17.2 19.1 15.7 17.3 19.2
8.5 15.6 16.8 183 15.8 17.3 19.1 16.0 17.7 19.6
4.5 20.9 22.2 237 20.9 22.6 24.5 211 22.8 247
4% 21.2 21.0
8.5 21.0 22.2 237 212 22.8 246 214 231 251
4.5 32.2 335 35.0 323 34.0 35.8 324 341 36.0
1% 27.3 25.8
8.5 323 33.5 35.1 325 341 35.9 327 34.4 364

Table 2 (above): Stationary GEV and LPIil return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return fevel from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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Return Flow {1000 CFS)

Peak Flow (1000 CFS)

Seasonal Extreme Flow Analysis

Cataloochee Creek near Cataloochee, NC (USGS 03460000)
Great Smoky Mountains National Park
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Figure 1 {above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.
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Table 1: Fitted parameter values and skill scores
for the best nonstationary GEV model.
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Figure 2 (above): Stationary GEV and LPIll return

scenarios.

Exceedance
Probability

20%

10%

4%

1%

CMIP Dec-Mar Average Daily VIC Flow

v
ea
s

413

10541970 1080-2008 2010-2030 2040-2080 2070-2098

Figure 3 (above): Boxplots of LOCA CMIP5

ensemble covariates. Results cover two RCP

levels (solid lines) and boxplots of nonstationary gas —— Lot Stationary Seasonal Exceedance Level scenarios.
return fevels generated from the LOCA CMIP5 ESS5 —— GEV Stabonary Sessoral rcesdence Level
ensemble of covariates. Results cover two RCP
Return Flow (1000 CFS)
Stationary Models Nonstationary GEV Model - GCM Percentile
GEV LPII RCP 1980-2009 2040-2069 2070-2099
25th Median  75th 25th Median  75th 25th Median  75th
14 14 45 11 13 15 11 13 15 11 13 1.5
8.5 11 13 15 11 13 15 11 13 1.6
19 19 45 14 17 20 14 1.7 2.0 14 17 2.0
8.5 15 17 20 14 1.7 2.0 14 17 2.0
26 25 45 2.0 2.4 27 2.0 2.4 2.7 2.0 2.4 2.8
8.5 21 2.4 27 2.0 24 2.8 2.0 2.4 2.8
40 35 45 34 3.9 45 33 3.9 45 33 4.0 4.6
8.5 34 3.9 45 3.4 3.9 46 33 39 4.6

Table 2 (above): Stationary GEV and LPIiI return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return level from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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Figure 4 (left): Risk of
exceeding critical flows
within design life for
stationary GEV and LPIII
meodels (solid lines) and best
nonstationary GEV model

simulations from the LOCA
CMIP5 ensemble of
covariates (boxplots).
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Peak Flow (1000 GFS)

Return Flow (1000 CFS)

Risk (%)

Seasonal Extreme Flow Analysis
Potomac River near Washington, D.C. Little Falls Pump (USGS 01646500)
Chesapeake & Ohio Canal National Historical Park

Historical Return Levels
. Best Nonstationary GEV Model
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100~ Table 1: Fitted parameter values and skill scores

for the best nonstationary GEV model.
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Figure 1 (above): A comparison of historical 5% and 1% stationary GEV and
best nonstationary GEV return levels. Gaps represent missing data.
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Figure 3 (above): Boxplots of LOCA CMIP5S
ensemble covariates. Results cover two RCP

Figure 2 (above): Stationary GEV and LPIll return

levels (solid lines) and boxplots of nonstationary Eu B Lo Stoliorary Seasorl Eweedance el scenarios.
return fevels generated from the LOCA CMIP5 ESes —— SEVSenary Sessoral bresdance Level
ensemble of covariates. Results cover two RCP
scenarios.
Return Flow (1000 CFS)
Stationary Models Nonstationary GEV Model - GCM Ensemble Percentile
Exceedance GEV LPII RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median 75th 25th Median  75th 25th Median 75th
45 94.2 114.5 138.0 100.2 121.9 148.2 99.2 1235 151.0
0% 127.0 1291 85 96.0 115.0 139.6 102.4 125.5 153.5 103.9 128.2 163.2
10% 149.1 151.4 45 108.9 130.8 156.4 115.3 138.9 167.6 114.2 140.6 170.7
85 110.8 131.4 158.2 117.7 142.8 173.4 119.4 145.7 184.1
a% 1749 176.2 45 1271 151.1 179.3 1341 160.0 191.7 132.9 161.8 195.1
85 129.2 151.7 181.2 136.7 164.3 198.2 138.5 167.4 210.0
45 153.4 180.2 2122 161.2 190.3 226.3 159.8 192.3 230.2
1% 209.2 206.9
85 155.7 180.9 2144 164.1 195.1 233.7 166.1 198.7 247.4

Table 2 (above): Stationary GEV and LPIil return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return fevel from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.

Risk of Exceeding 192700 CFS in 20-year Design Life Risk of Exceeding 209200 CFS in 20-year Design Life Risk of Exceeding 243400 CFS in 20-year Design Life Figure 4 (left): Risk of
- Stationary GEV 2% Exceedanca Flow - - Stationary GEV 1% Exceedance Flow - - Stationary GEV .2% Exceedance Flow - exceeding critical flows
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Historical Return Levels

Seasonal Extreme Flow Analysis
Flat Brook near Flatbrookville, NJ (USGS 01440000)
Delaware Water Gap National Recreation Area

— Observed Peak Flows

Best Nonstationary GEV Model
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Figure 2 (above): Stationary GEV and LPIll return . W i i i
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ensem‘ e of covariates. Results cover two ensemble covariates. Results cover two RCP
scenarios. scenarios.
Return Flow (1000 CFS)
Stationary Models N ionary GEV Model - GCM Ensemble Percentile
Exceedance GEV LPII RCP 1980-2009 2040-2069 2070-2099
Probability 25th Median  75th 25th Median  75th 25th Median  75th
4.5 0.9 11 15 0.9 1.2 1.6 09 1.2 1.7
20% 13 13 8.5 0.9 11 15 1.0 13 17 10 13 1.8
10% 16 16 4.5 1.0 12 17 1.0 13 18 10 13 1.9
8.5 1.0 13 17 11 15 19 11 15 2.0
a% 21 51 4.5 1.1 14 1.9 1.1 1.5 21 11 15 2.1
8.5 1.1 14 19 1.2 1.6 22 1.2 16 2.3
4.5 1.2 15 2.1 1.2 1.6 2.3 1.2 1.7 2.4
1% 3.0 3.0
8.5 1.2 16 2.1 13 1.8 2.4 13 18 2.6
Table 2 (above): Stationary GEV and LPIil return levels and best nonstationary GEV return levels. Percentiles for nonstationary return levels
represent the percentile return fevel from the LOCA CMIP5 ensemble within the specified time period. Results cover two RCP scenarios.
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215 Century Flood Risk Projections for the U.S. National Park Service
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