Sediment fluxes in a changing climate Tahoma Creek over daily to centennial time-scales

Overview

- General background
- Part 1 Sediment transport in a steep stream
 - LiDAR analysis of geomorphic change, bed load transport
 - Development of sediment rating curve

Part 2 – Historical analysis of Tahoma Creek

- Dendrochronologic reconstruction of debris flows
- Relationship to climatic drivers

~30 Debris flows since 1967

Two major pulses:

1967-1972

1986-1992

≊USGS

Regional Concern

- Glacier retreat increases sediment availability
- Hydrology may be intensifying
- Both drive increased sediment fluxes
- Aggradation in downstream rivers poses hazards

-exacerbated flooding damage

Part 1 – Sediment Transport

Using repeat LiDAR to measure sediment transport in a steep stream. Anderson and Pitlick

Background

- Bed load transport through steep streams controls timing, pace of response to glacial retreat
- Bed load transport is hard to measure, hard to predict
 – Particularly in steep streams

Lasers

• High-resolution topographic surveys have the potential to improve our understanding of everything, ever

- LiDAR flown in 2002, 2008, 2012
- Create '02-'08 and '08-'12 DoDs
- Estimate bed load transport
- Use transport rates, hydrology to create sediment rating curve

Volumetric Change -> Bed load

- Surveys cover entire basin Vertical
- Sediment can only leave basin through downstream transport
 - -debris flows, fluvial transport
 - So...
 - The net change upstream of a point should represent transport past that point

Development of rating curve

- LiDAR provides estimates of total loads over two distinct time periods
- Stream gaging provides estimate of hydrology of those two periods
- Bed load transport is a function of stream flow

Development of rating curve

Assume sediment transport goes as

$$q_s = a(q - q_{crit})^b$$

Use daily mean discharge, two total loads and reasonable q_{crit} to solve for a and b using paired equations

$$Q_{s1} = \int_{t1}^{t1} a(q - q_{crit})^b$$
$$Q_{s2} = \int_{t2}^{t3} a(q - q_{crit})^b$$

Cumulative sum of $q_s = a(q-q_{crit})^b$

Period	Volumetic Deposition (m3/yr)	Bedload Volume (m3/yr)	Tahoma Creek transport (m3/yr)	Percent of Total
1956-1985	430,000	86,000	25,000	29%
1985-2011	770,000	154,000	73,000	47%
1956-2011	580,000	116,000	47,000	41%

Disadvantages

- Cost
- Time Interval between surveys

Advantages

- Static measurement of topography
- Integrated transport rates over many event
- Most accurate for high flows, active basins
 - -works best where most methods struggle most
- Works for any integrated sediment loads

Part 2 – Dendrochronology+

The geomorphic impacts and historical precedence of debris flows within Tahoma Creek, Mount Rainier, WA. Anderson and Kennard

Overview

- Are debris flows more frequent in a warming climate?
 - -Higher sediment availability
 - -More triggering events

- Need:
 - -Baseline data of historical frequency
 - Understanding of climatic controls

Dendrochronology

Growth direction \longrightarrow

Varia	Europe True	disturbances	Sample	Percent	
rear	Event Type	recoraea	aepin	ajjeciea	Establishments
1508	Tahoma Lahar?	3	9	33%	na
1530-1563	Establishment	na	na	na	12
1611	Debris flow	2	33	6%	na
1643	Landslide	4	38	11%	na
1649	Debris flow	5	38	13%	na
1685	Flood	4	44	9%	na
1697	Debris flow	6	45	13%	na
1730	Flood	5	51	10%	na
1753	Debris flow	5	55	9%	na
1791	Flood	4	66	6%	na
1826	Flood	7	73	10%	na
1831	Debris flow	4	73	5%	na
1840	Debris flow	5	81	6%	na
1847	Debris flow, flood	7	84	8%	na
1853	Debris flow	7	87	8%	na
1855	Flood, debris flow?	7	87	8%	na
1877	Flood	4	98	4%	na
1880	Debris flow	7	101	7%	na
1890	Flood	4	120	3%	na
1895	Debris flow, flood	12	129	9%	na
1870-1896	Establishment	na	na	na	38
1905-8	Floods, debris flows?	11	135	8%	na
1911-12	Debris flow, flood	5	136	4%	na
1925-6	Flood	11	144	8%	na
1936	Flood	9	148	6%	na
1959-60	Flood, debris flow?	16	155	10%	na
1966-1968	Outburst floods?	16	158	10%	na
1988	Flood, debris flow?	8	158	5%	na
1991	Debris flow	20	158	13%	na
1993-1995	Debris flows	19	158	12%	na
2007	Flood, debris flow	14	151	9%	na
2008-2009	Floods	13	151	9%	na

Temperature, Glacial Mass Balance Debris flows Mean annual temperature, C Floods Graumlich and Brubaker Longmire Station

Post-LIA colonization (1870-1896)

Debris Flow Summary

- Debris flows occur in decades following glacial retreat
 - Increased sediment availability (?)
 - Increased frequency of outburst floods (??)
- Post-LIA debris flows were likely as destructive as modern debris flows
 - Some indication of increased intensity

Synthesis

- Tahoma Creek does not show clear evidence of functioning outside of historical range of variability
 - May function as conduit; look to depositional zones

Questions?

References

Copeland, B. 2009. Recent Periglacial Debris Flows from Mount Rainier, Washington. M.S. Thesis, Oregon State Univ.

Nylen, T.N. 2004. Spatial and Temporal Variations of Glaciers (1913-1994) on Mt. Rainier and the Relation with Climate. M.S. Thesis, Portland State University, 111p.