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3 Key Points

1. Near-field seismic recordings can be used to determine when a
debris flow transitions to a hyperconcentrated flow.

Study Area: Debris Flows in Tahoma Creek What are the seismic characteristics of the various flow states as the flow moves down the channel?

Tahoma Creek (a) sits on the SW flank of Mount Rainier (b) in Washington, USA. Over 60 documented Waveform envelopes (below) illustrate the progression of the flow. We have classified the recordings into three groups: debris flow (red), transitional depositional state Spectrograms show significant changes in spectral content as the flow progresses down the channel. We show three
debris flows have occurred in Tahoma Creek since 1926. This debris flow originated from a suspected (yellow), and hyperconcentrated flow (blue). The approximate locations of the transitions between flow states (black dashed lines) occur between Stations 112 and 111 example spectrograms from Stations 201, 111, and 108.
glacial outburst on South Tahoma Glacier on August 15, 2023. for the transition from debris flow to deposition and Stations 109/TABR and Station 108 for the transition from deposition to hyperconcentrated flow.
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2. Debris flow recordings have a sharp signal arrival, a defined low-
frequency leading snout, and a wide range of frequency signal

In the upper stretches of the Tahoma Creek channel (c), this event acted as a classic debris flow. In the mid
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and lower stretches of the channel (d & e), we see evidence of large deposits, indicating that the flow Lower Channel 0.10 1 Debris Flow content in the main body of the flow.
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the primary classification tool  for
distinguishing hyperconcentrated flows (20-
60%) from debris flows (>60%).1-2
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